

Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project

Survey Results of Sukhi Reservoir Location | Central Gujarat

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | 11 November 2021 Final Report Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat

Document Control

Document Information

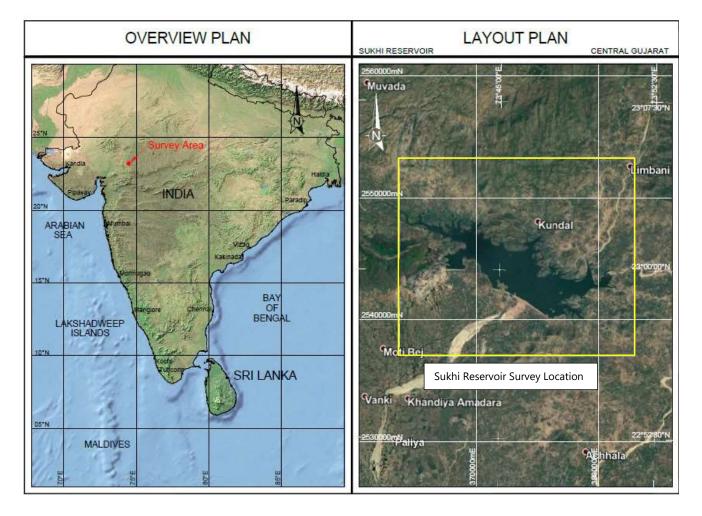
Project Title	Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project
Document Title	Survey Results of Sukhi Reservoir Location
Fugro Project No.	J-HYD-20-174630
Fugro Document No.	JHYD20-174630-Volume 8-Sukhi Reservoir/R1
Revision Number	[01]
Issue Status	Final Report

Client Information

Client	Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat
Client Address	Executive Engineer, W.R.I. Division, C – 9, Multistoried Building, Lal Darvaja, Ahmedabad, Gujarat - 380001
Client Contact	Mr. Piyush Bhattacharjee
Client Document No.	NOA NNo.WRIDn/SK/NOA/1588/2020 Dated 09 November 2020

Distribution List

Revision Details	Distribution Details	Hard copy	Soft Copy	
[01]	a) Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat	1 No.	PDF	
R1 [01]	b) FSINPVT Archive		PDF	


Revision History

Rev	Date	Status	Prepared By	Checked By	Approved By
			Athavale	Hais	faluel ?
[01]	11 November 2021	Final Report	Alok A / Sukla C.	G.N. Hariharan	Rahul Patkar
[00]	14 October 2021	Final Report	Alok A / Sukla C.	G.N. Hariharan	Rahul Patkar

LOCATION MAP

EXECUTIVE SUMMARY

Survey Overview– Sukhi	Reservoir Location
Preamble:	The Gujarat State Government is implementing World Bank assisted national hydrology project. This project aims to improve the planning, development, and management of water resources, as well as flood forecasting and reservoir operations in real-time. Various activities, including Sediment survey, Water Quality monitoring have been planned under this project. Water Resources department have evolved a comprehensive plan for periodic assessment of reservoir storage capacity and sedimentation of eleven (11) reservoirs.
	In this regard, Narmada Water Resources, Water Supply and Kalpsar Department/ Government of Gujarat contracted Fugro Survey (India) Pvt. Ltd. (FSINPVT) to carry out the Bathymetry and Topography survey. Fugro's scope of work consist of Bathymetry and Topography survey at the eleven (11) reservoirs
	In order to complete the scope, the survey was carried out in two passes at Sukhi reservoir location;
	<u>Pass 1</u> : Bathymetry / Hydrographic Survey.
Data Acquisition:	 <u>Pass 2</u>: Topographical Survey FSINPVT mobilised their bathymetry and topographical survey team and equipment along with survey boat 'Polaris' in the months of March - May 2021 and June - July 2021 respectively, in order to acquire survey data as per mutually agreed scope and relevant survey specifications.
Survey Location	Sukhi Reservoir, Sagdhara-Khos village, Pavi Jetpur Taluka, Chhota Udepur District, Gujarat.
Survey Geodesy:	The survey was conducted in WGS 84 datum, Universal Transverse Mercator (UTM) Projection, Zone 43 N, CM 075°E.
Scope Compliance & Meets Client's	FSINPVT performed this survey methodically as per the scope of work defined in the contract and the results obtained have met the client's objectives in following areas:
objectives:	 To assess the reservoir storage capacity;
	 To assess the variations in the reservoir capacity;
	• To estimate and study sedimentation behaviour in horizontal zones and
	 vertical zones, namely dead storage, live storage and flood storage; To upgrade Elevation–Area-Capacity tables / curves of reservoir at regular intervals;
	 To create historical database for further water resources usage planning.
Accuracy and Reliability	The accuracy of the data logged was ensured by calibrating each and every sensor deployed in the current survey. Statistical techniques were applied during the execution of the survey to ensure that the results of survey conform to the agreed levels of accuracy and precision.
Tidal Corrections	All raw water depths were reduced to reservoir water levels. The water level heights or reservoir water levels w.r.t. MSL were observed for the entire survey period and the same was used to calculate the reservoir bed heights w.r.t. MSL.

Survey Findings – Sukhi Reservoir Location			
Reservoir Bed Heights	In general, lowest reservoir bed level was found at the upstream face of the dam and it becomes less deeper as we go further upstream from the dam face. Lowest reservoir bed level recorded during bathymetry survey was 128.0 m (385 379 mE, 2 481 928 mN) w.r.t. MSL.		
Area Capacity Survey (2021)	Elevation Area Capacity table and curve of Sukhi reservoir was prepared based on bathymetry and topography survey data acquired at 25 m line spacing and 25 m x 25 m grid interval respectively. The processed xyz data was used to prepare DTM. Capacity and areas at various elevations from lowest bed level (128.0 m) to FRL (147.82 m) was calculated using GIS software.		
Elevation area capacity details	In comparison with 1987 Original Project data, the present survey results indicate that the gross storage capacity has decreased.		
Loss in gross storage capacity (w.r.t. 1987)	As per 2021 survey results, the loss in Gross storage capacity w.r.t. 1987 or volume of sediment deposited in the Sukhi reservoir is 3.234 Mm ³ .		
Loss in live storage capacity (w.r.t. 2013)	In comparison with 2013 survey results the 2021 survey results indicate increase in live storage capacity in the Sukhi reservoir. The increase in live storage is 2.986 Mm ³ .		
Trap efficiency & Sedimentation Index	Trap Efficiency and sedimentation Index calculated for Sukhi reservoir as per methodology give in IS 12182-1987 is 97% and 6.938 x 10^{10} sec ² /m respectively		
Sedimentation rate	The rate of siltation in Sukhi reservoir is 0.095 Mm ³ /year		
Average rate of siltation	The observed rate of siltation in the Sukhi reservoir during the 34 year life span (1987 – 2021), works out to 2.310 Ha m/100 sq km/year.		
Annual % loss	The annual % loss in gross storage capacity for Sukhi reservoir during the 34 year life span is 0.053% and hence, the reservoir is classified as "Insignificant category" as per IS 12182 (1987).		

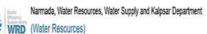
CONTENTS

1.	Introduction	1	
1.1	General	1	
1.2	Study Area		
1.3	Geology of Study Area	5	
1.4	Soil Types	5	
1.5	Land use pattern	5	
1.6	Sukhi Reservoir Characteristics	6	
1.7	Project Objectives	7	
1.8	Scope of Work	7	
	1.8.1 Pass 1: Bathymetry / Hydrographic Survey1.8.2 Pass 2: Topographical Survey	8 8	
1.9	Survey Execution	8	
1.10	Reference Documents	8	
1.11	Deliverables	8	
2.	Survey Specifications and Resources	9	
2.1	Survey Geodesy	9	
2.2	Horizontal Control	9	
2.3	Vertical Control / Water Level Corrections	10	
2.4	Accuracy and Precision of Results	11	
2.5	Survey Personnel Deployed	11	
2.6	Equipment Deployed	12	
2.7	Survey Vessel		
2.8	Survey Database Used	13	
3.	Survey Data Acquisition	14	
3.1	Survey planning, Preparation & Transportation to Site	14	
3.2	Equipment Setup Configuration and Calibration	14	
3.3	Field Calibration and Verifications	14	
	3.3.1 Heading Sensor Alignment	14	
	3.3.2 Navigation System – DGNSS	15	
	3.3.3 Sound Velocity Measurements3.3.4 Heave Compensator	15 15	
	3.3.5 Single Beam Echosounder	15	
3.4	Data Acquisition and Online Quality Control	15	
5.4	3.4.1 On-line QC of Data Logged	16	
3.5	Topography Survey Control of Work	10	
2.0	3.5.1 RTK Verification	17	
	3.5.2 RTK Position Comparison	17	

References	55
Conclusions	54
Sedimentation in Reservoir	46
Comparison of Elevation Area Capacity Details	33
Elevation Area Capacity Curve (2021)	29
Reservoir Bed Heights	24
Survey Results – Sukhi Reservoir	24
Charting the Results of Bathymetry and Topography Data	23
Sedimentation in Different Zones of Reservoir	22
Development of Area Capacity Curves	21
Creating Digital Terrain Model (DTM)	21
Bathymetry Data Processing	20
Navigation and Positioning	20
Data Processing and Interpretation	20
Survey Coverage and Scope Completion	19
3.5.3 Topographical Survey Methodology	17
	Survey Coverage and Scope Completion Data Processing and Interpretation Navigation and Positioning Bathymetry Data Processing Creating Digital Terrain Model (DTM) Development of Area Capacity Curves Sedimentation in Different Zones of Reservoir Charting the Results of Bathymetry and Topography Data Survey Results – Sukhi Reservoir Reservoir Bed Heights Elevation Area Capacity Curve (2021) Comparison of Elevation Area Capacity Details Sedimentation in Reservoir Conclusions

APPENDICES

Appendix A Diary of EventsAppendix B Survey Vessel Sensor OffsetsAppendix C Equipment Layout DiagramAppendix D Results of Field Calibrations / VerificationsAppendix E Benchmark DescriptionsAppendix F List of Charts


Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat

TABLES

Table 1.1: Client Supplied Sukhi Reservoir Salient Features	6
Table 1.2: Sukhi Reservoir details for Bathymetry and Topography Survey	7
Table 1.3: Reference Documentation	8
Table 2.1: Geodetic Datum, Projection Parameters	9
Table 2.2: Observed Reservoir Water Level Heights at Sukhi Reservoir	10
Table 2.3: List of Survey Personnel – Bathymetry Survey 'Polaris'	11
Table 2.4: List of Survey Personnel – Topography Survey	11
Table 2.5: List of Personnel – Onshore Project Management and Data QC	11
Table 2.6: Survey Equipment / Systems Deployed for Bathymetry Survey in Polaris	12
Table 2.7: Survey Equipment / Systems Deployed for Topographical Survey	12
Table 3.1: Results of Positioning System Verification	15
Table 3.2: Summary of Single Beam Echosounder Calibration Results by 'Bar Check' Method	16
Table 3.3: Results of RTK Position Comparison	17
Table 5.1: Elevation Area Capacity table at every 0.1 m interval starting from lowest bed level to FRL	-
for the Survey Year 2021	29
Table 5.2: Comparison of Elevation Capacity details of 2021, 1999 and 1982 data	33
Table 5.3: Comparison of Live Storage Capacity details of 1987 (Original), 2012-2013 and 2021 surv	ey
data	41
Table 5.4: Sedimentation in Sukhi Reservoir based on 1987 (Original) and 2021 survey data	46
Table 5.5: Trap Efficiency and Sedimentation Index for Sukhi Reservoir	46
Table 5.6: Sedimentation Volumes from Surveys of Previous Years of 1987 and 2021 (Gross Storage	
Capacity)	47
Table 5.7: Sedimentation in Sukhi Reservoir based on 1987 (Original), 2013, and 2021 survey data	47
Table 5.8: Sedimentation Volumes from Surveys of Previous Years of 1987, 2013 and 2021 (Live	
Storage Capacity)	48
Table 5.9: Gross, Live and Dead storage capacity from bed level to FRL at 0.1 m interval	48
Table 5.10: Summary of previous survey (Live Storage Capacity)	53

FIGURES

Figure 1.1: Narmada basin showing major tributaries – Drainage and sub- basins (India-WRIS, 2014)
and Satellite Image of Sukhi Reservoir (Google Earth)	4
Figure 2.1: Survey boat Polaris	12
Figure 3.1: Sukhi Dam Temporary Benchmark (SUKHI-TBM)	18
Figure 3.2: Temporary Benchmark 6 (TBM-06)	19
Figure 4.1: Reservoir Bed Height Calculation w.r.t. MSL	20
Figure 4.2: Sedimentation in different zones of reservoir (Ref: IS 5477-Part 1,1999)	22
Figure 5.1: Image showing gridded SBES Bathymetry and topography data (superimposed with	
satellite imagery) of reservoir bed heights in metres from lowest bed level to FRL	25
Figure 5.2: Shaded Relief Image showing gridded SBES Bathymetry and topography data of reserv	oir
bed heights in metres from lowest bed level to FRL.	26
Figure 5.3: 3D view of Sukhi Reservoir	27
JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page v of vii	20

Figure 5.4: Photographs A, B, C and D showing the northern, eastern, north-western, and southern	
parts within Sukhi Reservoir respectively	28
Figure 5.5: Elevation Area Capacity Curve (2021) of Sukhi Reservoir	32
Figure 5.6: Comparison of Elevation Area capacity curves of Sukhi Reservoir for 1987(Original) and	
2021 surveys	40
Figure 5.7: Comparison of Live capacity curves of Sukhi Reservoir for 1987(Original), 2012-2013 and	I
2021 surveys	45

LIST OF ABBREVATIONS

BM	Benchmark
Ch	Channel
СМ	Central Meridian
CVT	Calibration, Verification & Test
DF	Dual Frequency
DGNSS	Differential Global Navigation Satellite System
DPR	Daily Progress Report
FBF	Fugro Binary Format
FRL	Full Reservoir Level
FSINPVT	Fugro Survey (India) Private Limited
FSL	Full Supply Level
ft	Feet
GLONASS	Global Navigation Satellite System
GPS	Global Positioning System
На	Hectare
HSE	Health, Safety and Environment
km	kilometre
m	metre
M ft ³	Millions cubic feet
M m ³	Millions cubic meter
MDDL	Minimum Draw Down Level
m/s	meter per second
ms	milliseconds
MSL	Mean Sea Level
OEM	Original Equipment Manufacturer
QA/QC	Quality Assurance / Quality Control
QMS	Quality Management System
Rel	Release
Rev	Revision
RL	Reference Level
SBES	Single beam Echosounder
Sr	Senior
SoW	Scope of Work
UTM	Universal Transverse Mercator
WGS	World Geodetic System
w.r.t	With respect to

UNITS

UTM grid coordinates and all linear measurements are reported in metres [m].

Angular values are reported in degrees (°).

Time and dates are reported as "18:00 on 16 February 2020

1. Introduction

1.1 General

Reservoirs originated by the construction of dams, is essential for the sustainable health and welfare of civilizations since it supplies water for human consumption, irrigation and energy production. Furthermore, dam reservoirs are used for recreation, navigation and they provide safety in the downstream valleys against extreme flood events and droughts (Bengtsson et al., 2012). All reservoirs are subjected to sedimentation which, without adequate prevention and mitigation counter-measures, threatens their sustainability.

Reservoir sedimentation is the gradual accumulation of the incoming sediment load from a river. This accumulation is a serious problem in many parts of the world and has severe consequences for water management, flood control, and production of energy. Sedimentation affects the safety of dams and reduces energy production, storage, discharge capacity and flood attenuation capabilities. It increases loads on the dam and gates, damages mechanical equipment and creates a wide range of environmental impacts (Schleiss et al., 2016).

Reservoir sedimentation is a process of erosion, transportation, deposition and compaction of sediments carried into reservoirs formed and contained by dams. In unregulated, mature rivers with stable catchments, sediment processes are relatively balanced. Construction of a dam decreases flow velocities, initiating or accelerating sedimentation.

Most of the world's reservoirs are in the continuous sediment accumulation stage. Many were designed by estimating sedimentation rates in order to provide a pool with sufficient volume to achieve a specified design life. However, this design life is typically far less than what is actually achievable. Therefore, managing reservoirs to achieve a full sediment balance is essential in order to maximize their lives. As every year sediment gets deposited in dead storage and in live storage of the reservoir, it has long and short range impact on the storage capacity of reservoir (Schellenberg et al., 2017). Correct assessment of the reservoir storage capacity is essential for assessing useful life of the reservoir as well as optimum reservoir operation schedule.

The Gujarat State Government is implementing World Bank assisted national hydrology project. This project aims to improve the planning, development, and management of water resources, as well as flood forecasting and reservoir operations in real-time. Various activities, including Sediment survey, Water Quality monitoring have been planned under this project. Water Resources department have evolved a comprehensive plan for periodic assessment of reservoir storage capacity and sedimentation of eleven (11) reservoirs.

In this regard, Narmada Water Resources, Water Supply and Kalpsar Department/ Government of Gujarat contracted Fugro Survey (India) Pvt. Ltd. (FSINPVT) to carry out the Bathymetry and Topography survey. Fugro's scope of work consist of Bathymetry and Topography survey at the eleven (11) reservoir as specified by Client.

These survey services comprised of the provision of suitable personnel and equipment in order to obtain, interpret and report on the bathymetry and topography within the survey area. In order to complete the scope, the survey was carried out in two passes at Sukhi reservoir;

Pass 1: Bathymetry / Hydrographic Survey;

Pass 2: Topographical Survey.

The bathymetry survey work was performed from the shallow draft boat 'Polaris'.

The survey reports are submitted in separate volumes for each reservoir location. This report covers **Bathymetry / Hydrographic and Topographical survey results for Sukhi Reservoir location.**

1.2 Study Area

The present study area falls under Narmada basin (Figure 1.1) which covers an area of 92,672.42 km² (GIS based calculated area) spreading across four states of Madhya Pradesh, Gujarat, Maharashtra and Chhattisgarh. Narmada basin is sub-divided into three sub-basins viz. Narmada upper sub-basin, Narmada middle sub-basin and Narmada lower sub-basin. Basin drainage and sub-basin boundary is given in Figure 1.1. Narmada upper sub-basin (46.61% of total basin area) consists of 71 watersheds, Narmada middle sub-basin (9.61% of total basin area) consists of 63 watersheds and Narmada lower sub-basin (9.61% of total basin area) consists of 16 watersheds (India WRIS, 2014).

The Narmada basin covers an area of 9894 km² (approximately 9% of the total basin area) in Gujarat.

Narmada is the largest west flowing river of the peninsula India. It rises from a Kund near Amarkantak, in the Anuppur district of Madhya Pradesh, at an elevation of about 1057 m w.r.t. MSL in the Maikala range. This river forms the traditional boundary between North India and South India and flows through Madhya Pradesh, Maharashtra and Gujarat between Vindhya and Satpura hill ranges before falling into the Gulf of Cambay in the Arabian Sea about 10 km north of Bharuch. The total length of the river from the head to its outfall into the Arabian Sea is 1,333 km. For the first 1085 km it runs in Madhya Pradesh and thereafter forms the common boundary between Madhya Pradesh and Maharashtra for 39 km, and Maharashtra and Gujarat for 43 km. In Gujarat State it stretches for 166 km (India WRIS, 2014).

There are total 41 tributaries of the Narmada River. Out of these, eight (08) important tributaries join the river from right bank and eleven (11) important tributaries joins from the left bank (India WRIS, 2014).

Karjan and Orsang rivers are the left and right bank tributaries of Narmada in the lower plains.

Sukhi River is a tributary of Orsang river and flows in northwest direction and is fed with seasonal rainwater. The major part of its catchment area is in the eastern Gujarat, with 79% of its area in Chhota Udepur district, 15% in Dahod district, 1 % in Panchmahal district, and remaining 5% in Jhabua district in adjoining state of Madhya Pradesh. The catchment area is mostly agricultural and forest land, and a significant part of the catchment falls within the Ratanmahal wildlife sanctuary (Kumar et al., 2019).

Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat

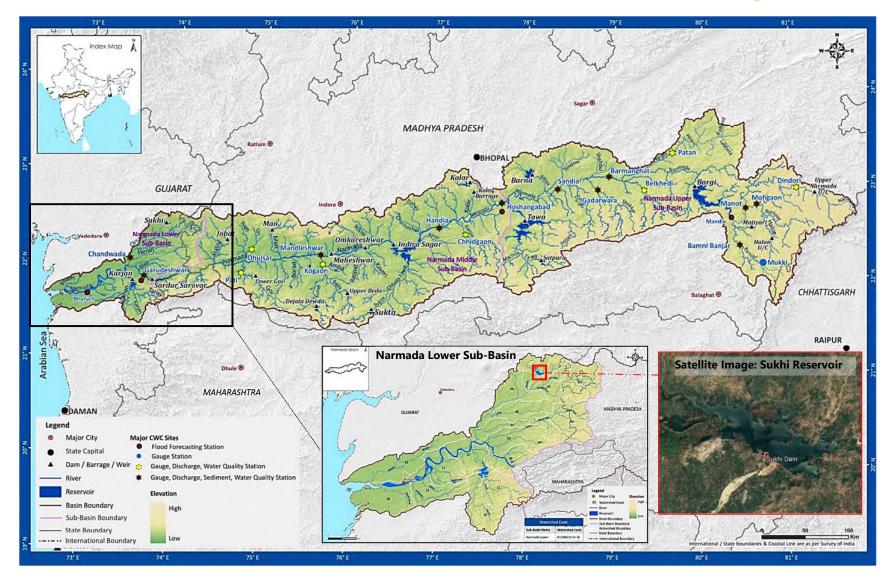


Figure 1.1: Narmada basin showing major tributaries – Drainage and sub- basins (India-WRIS, 2014) and Satellite Image of Sukhi Reservoir (Google Earth)

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page 4 of 55

TUGRO

1.3 Geology of Study Area

The rocks of the Chhota Udepur district shows an age from Proterozoic to Recent but a striking features of the district stratigraphy is the total absence of Paleozoic, and the development of only the uppermost Mesozoic rocks. The south westerly extended Precambrian basement of Peninsular India, the oldest rocks of Proterozoic age, are exposed in eastern and north eastern part of the district. Post Cretaceous sediments & major volcanic rocks rest over this south westerly extended Precambrian basement. Post Cretaceous sediments, Infratrappean and Intratrappean are exposed as scattered inliers while younger volcanic rocks unit as Deccan traps are well represented and so are the Tertiary and Quaternary, though the Tertiary records are not complete and fully exposed.

The older Pre-Champaner Gneissic Complex is exposed in the south-eastern part of the fold belt around Jetpur and Chhota Udepur regions (Das and Saha, 2001). This complex consists of quartz - muscovite - felspathic gneiss, biotite granite gneiss, banded gneiss, patches of muscovite schist (±kyanite), sillimanite-bearing muscovite schist, garnetiferous biotite schist and gneisses (Das et al., 2009).

At the Sukhi dam site, rock type such as Granite, Pegmatite veins, Gneiss and Mica schists with Pegmatite were encountered.

1.4 Soil Types

The soils of Chhota Udepur district are broadly categorized into four types viz. (i) Hard Black Soil, (ii) Medium Black Soil, (iii) Sandy Ioam Soil and (iv) Saline Soil.

The present survey area is located in Jetpur Pavi taluka within Chhota Udepur district where deep black, medium black to loamy sand (Goradu) soils are observed.

1.5 Land use pattern

The Chhota Udepur district has a geographical area of 343.606 ('000 Ha.) which comprises cultivable area of 165.430 ('000 Ha.), forest area of 75.304 ('000 Ha.), cultivable wasteland of 15.358 ('000 Ha.) and other fallow land of 38.867 ('000 Ha.).

1.6 Sukhi Reservoir Characteristics

The Sukhi reservoir is constructed over the Sukhi river. Sukhi major irrigation scheme was executed between the years 1978 and 1987 and consists of earthen and masonry dam.

Salient features of the Sukhi reservoir and dam are tabulated below.

Table 1.1: Client Supplied Sukhi Reservoir Salient Features

Characteristics	Feature
Reservoir name	Sukhi Reservoir
Name of Dam	Sukhi Dam
Purpose	Irrigation
Name of River	Sukhi
River Basin	Narmada (Narmada Lower Sub-Basin)
Village	Sagdhara-Khos
Taluka	Pavi Jetpur
District	Chhota Udepur from 2013 (formerly in Vadodara district)
State	Gujarat
Year of commencement of construction work	1978
Year of completion	1987
Hydrology	
Total Catchment Area	411.81 km ²
Mean annual rainfall	1053 mm
Annual Yield	217.10 Mm ³
Maximum observed flood	3610.00 Cumecs
Reservoir Details	
Top bund level.	152.50 m
High Flood Level (H.F.L.)	148.30 m
Full Reservoir Level (F.R.L.)	147.82 m
Spillway crest level	139.59 m
Minimum draw down level (MDDL)	135.0 m
Gross storage capacity	178.47 Mm ³ (1987)
Live Storage	167.14 Mm ³ (1987)
Dead Storage	11.33 Mm ³ (1987)
Area at full reservoir level	29.04 km ²
Dam Details	
Type of Dam	Earthen dam and Masonry spillway
Total Volume Content:	
Concrete	0.0327 Mm ³
Masonry	0.102 Mm ³

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **6** of 55

Characteristics	Feature	
Earthwork	4.579 Mm ³	
Bed Rock	Granite, Gneiss and Mica-schists	
Maximum height above the lowest point of foundation	38 m	
Length of the dam 4254.66 m		
Height of the dam	m 26.50 m	
Spillway Details		
Length 149.66 m (249 m including NOF)		OF)
Туре Одее		
Type, size and number of Gates	s Radial, 12.50 m x 8.23 m, 10 nos.	
Maximum discharge	e 5964.3 m³/s	
Canal Details	Left Bank Canal	Right Bank Canal
Length (km)	3.06	38.07
Discharge Capacity (m ³ /s)	4.56	12.96

1.7 Project Objectives

Primarily the main objective of the survey was to:

- Assess the reservoir storage capacity;
- Assess the variations in the reservoir storage capacity;
- Create historical database for further water resources usage planning.
- However, the main objective of the bathymetry survey was to:
- Estimate and study the sedimentation behaviour of reservoirs in different zones including horizontal zones throughout the reservoirs as well as vertical zones namely:
 - a) Dead storage
 - b) Live storage
 - c) Flood storage
- Upgrade Elevation-Area-Capacity tables / curves of reservoirs at regular intervals.

Table 1.2 provides bathymetry and topography survey area details for Sukhi reservoir.

Table 1.2: Sukhi Reservoir details for Bathymetry and Topography Survey

Name of Dam / Reservoir	Actual Area (km ²) surveyed	
	Bathymetry Survey	Topography Survey
Sukhi	13.82	12.61

1.8 Scope of Work

To achieve the above objective, Fugro carried out survey for eleven (11) reservoir areas in two (02) passes. The scope of work undertaken for Sukhi reservoir is as follows:

1.8.1 Pass 1: Bathymetry / Hydrographic Survey

The scope of work conforms bathymetry survey for total area of 13.82 km² was completed.

The following scope of work was undertaken in-order to achieve client objectives:

- Bathymetry / Hydrographic survey work was conducted using echosounder for assessment of reservoir capacity and sedimentation at Sukhi reservoir of Gujarat.
- Survey lines were run at 25 m segment line spacing and along the survey line continuous data of 25 m x 25 m grid point were captured so that each and every point is included. Additional survey lines were executed as and when required.
- DGNSS positioning system, Dual frequency single beam echosounder system along with associated Navigational system were deployed on all the survey lines.

1.8.2 Pass 2: Topographical Survey

Topographical survey was carried out using Total station and equivalent levelling instruments. The total area covered in topographical survey was 12.61 km². Following scope of work was undertaken in order to achieve client objectives:

- Topographical survey was conducted to facilitate hydrographic survey so as to fill up the gaps between MWL area and reservoir submergence area till current water level for assessment of reservoir capacity and sedimentation at the reservoir locations.
- Topographical survey was carried out from FSL to present water level of reservoir, with sufficient overlap with hydrographic survey for preparing overall contour map of reservoir.
- The area not covered through hydrographic survey upto maximum water level (MWL), was surveyed by taking levels at 25 m interval along range lines laid at 25 m interval (25 m x 25 m grid).

1.9 Survey Execution

The survey boat 'Polaris' was mobilized at Sukhi reservoir location to carry out the survey. Survey operations were executed as per the mutually agreed survey execution schedule.

1.10 Reference Documents

Table 1.3: Reference Documentation

SI/No.	Document Name	Document identity
1	FSINPVT Quote / Contract	NOA No. WRIDn/SK/NOA/1588/2020 Dated 09 November 2020
2	FSINPVT Survey Procedure	JHYD20-174630/SP/P0/Rev.0 dated 01 December 2020

1.11 Deliverables

Final report and Charts / Drawings to be delivered as per the contract, as listed in <u>Appendix F</u> to this Report, have been duly submitted. Details of the Charts accompanying this report are also placed at <u>Appendix F</u>.

2. Survey Specifications and Resources

The bathymetry / hydrographic survey and topography survey conformed to the following mutually agreed scope of work and were conducted as per the methodology described in the standard work instruction by FSINPVT.

2.1 Survey Geodesy

The survey was conducted in WGS84 Datum and grid coordinates in terms of Universal Transverse Mercator (UTM) projection (Zone 43 N, CM 075° E) as per client's instruction. The details of the Geodetic parameters are as follows:

Global Positioning System Geodetic Parameters		
Datum:	World Geodetic System 1984	
Spheroid:	World Geodetic System 1984	
Semi major axis:	a = 6 378 137.000 m	
Inverse Flattening:	1/f = 298.257 223 563	
Map Projection:	Universal Transverse Mercator	
Grid System:	UTM Zone 43 N;	
Central Meridian:	075° 00′ 00″ East	
Latitude of Origin:	0° 00′ 00″ North	
False Easting:	500 000 m	
False Northing:	0 m	
Scale factor on Central Meridian:	0.9996	
Units:	Metre	
Notes:		
• The Client has specified the above Datum and Transformation parameters to be used		
for this survey.		
• Fugro's Starfix software suite always uses WGS84 as the primary datum for all geodetic calculations.		

Table 2.1: Geodetic Datum, Projection Parameters

2.2 Horizontal Control

Spatial Dual was used for positioning the survey vessel during this survey. Spatial Dual is a rugged GPS aided inertial navigation system that provides accurate position, velocity, acceleration and orientation under the most demanding conditions. It combines temperature calibrated accelerometers, gyroscopes, magnetometers and a pressure sensor with a dual antenna RTK GNSS receiver. They are coupled in a sophisticated fusion algorithm to deliver accurate and reliable navigation and orientation.

The computer running Starfix NG was used for navigation, data logging and online quality control of the survey data.

2.3 Vertical Control / Water Level Corrections

All vertical levels were reduced to respective water level references. The water level heights or reservoir water levels w.r.t. MSL were observed for the entire survey period and the same was used to calculate the reservoir bed height. Observed reservoir water level heights is tabulated below:

	-
Date	Observed Reservoir Water Level Heights w.r.t. MSL at Sukhi Reservoir [m]
03-04-2021	144.45
04-04-2021	144.40
05-04-2021	144.32
06-04-2021	144.25
07-04-2021	144.19
08-04-2021	144.10
09-04-2021	144.06
10-04-2021	144.03
11-04-2021	143.94
12-04-2021	143.89
13-04-2021	143.84
14-04-2021	143.80
15-04-2021	143.74
16-04-2021	143.68
17-04-2021	143.60
18-04-2021	143.60
19-04-2021	143.53
20-04-2021	143.49
21-04-2021	143.48
22-04-2021	143.39
23-04-2021	143.38
24-04-2021	143.32
25-04-2021	143.28
26-04-2021	143.19
27-04-2021	143.14
28-04-2021	143.09
29-04-2021	143.03
30-04-2021	142.96
01-05-2021	142.94
02-05-2021	142.86
	I

Table 2.2: Observed Reservoir Water Level Heights at Sukhi Reservoir

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **10** of 55

Date	Observed Reservoir Water Level Heights w.r.t. MSL at Sukhi Reservoir [m]
03-05-2021	142.84
04-05-2021	142.78

2.4 Accuracy and Precision of Results

The accuracy of the data logged was ensured by calibrating each and every survey sensor deployed for the current survey, for eliminating systematic errors or bias. Internationally accepted survey work practices were adopted for carrying out such calibrations, sensor alignments and field verifications.

The quality of the data logged was monitored on-line using Fugro's on-line QC tools and ensured it met the agreed accuracy and precision levels. At the data processing, charting and reporting stages, the results of survey were further analysed and checked to ensure that they conformed to the agreed levels of accuracy and precision. The precision (or the repeatability) of the results of survey were controlled by adopting 'Statistical' techniques.

2.5 Survey Personnel Deployed

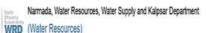
Following FSINPVT staffs were associated to bathymetry survey for this project.

able 2.5. List of Survey reisonner – Bathymetry Survey rolans	
Bathymetry Survey Personnel	
Personnel Name	Function
Arpit Bose	Party Chief / Surveyor
Mathiyazhagan V.	Engineer
Sunil Singh	Polaris Operator

Table 2.3: List of Survey Personnel – Bathymetry Survey 'Polaris'

Following FSINPVT staffs were associated to topography survey for this project.

Table 2.4: List of Survey Personnel – Topography Survey


Topography Survey Personnel	
Personnel Name	Function
Arunabha Chakraborty+ Survey Assistants	Topography Survey Team

Following onshore FSINPVT staffs were associated to this project.

Table 2.5: List of Personnel – Onshore Project Management and Data QC

Onshore Project Management and Data QC	
Rahul Patkar	Service Line Manager
Vikas Walanj/Anantha Krishnan	Project Manager
R.B. Jayaraman	Client Deliverable Manager
Avijit Nag	Survey Manager
G.N. Hariharan	Chief Geophysicist
Avinash Vasudevan	Reporting Manager

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **11** of 55

Onshore Project Management	nd Data QC
Prashant Mishra	Reporting Project Supervisor
K. Srinivas	Data Centre Manager

2.6 Equipment Deployed

Following equipment and systems were deployed for the survey work. The equipment setup and configuration diagram on the survey boat Polaris is placed at <u>Appendix C</u> to this document.

Table 2.6: Survey Equipment / Systems Deployed for Bathymetry Survey in Polaris

Equipment / System	Description / Make / Model/Resolution /Accuracies
Software / Navigation	Starfix.NG PC based data acquisition and survey vessel navigation package.
Positioning	Trimble BX-992 & Spatial Dual Receivers
Heading Sensor	Spatial Dual
Motion Sensor	Spatial Dual
Sound Velocity	Odom DigiBar Pro
Single beam Echosounder	Echotrac E20 Dual Frequency Single Beam Echosounder

Table 2.7: Survey Equipment / Systems Deployed for Topographical Survey

Equipment / System	Description / Make / Model/Resolution /Accuracies
Land Survey	GNSS RTK LYNX H6 System along with accessories and consumables.

2.7 Survey Vessel

Shallow draft boat 'Polaris' was used to carry out the bathymetry / hydrographic survey.

Figure 2.1: Survey boat Polaris

2.8 Survey Database Used

Details of all existing engineering structures within the survey area, as supplied by the Client and interface boundaries drawn between land and water body, shallow patches taken from Google Earth images, were used as a background file in the navigation system during the entire tenure of survey.

- Client supplied FRL/FSL RL height 147.82 m w.r.t. MSL
- Full Supply Level (FSL) 147.82 m w.r.t. MSL
- Water line 143.60 m approximately.

3. Survey Data Acquisition

3.1 Survey planning, Preparation & Transportation to Site

The bathymetry survey equipment and personnel with survey boat 'Polaris' arrived at Sukhi reservoir location on 30 March 2021 and equipment was mobilised on-board the survey boat on 1 -2 April 2021.

After field testing / verification / calibration of all survey equipment bathymetry survey was carried out and completed on 05 May 2021. Refer <u>Appendix A</u> to this document for diary of events.

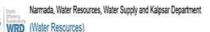
The topography survey equipment and personnel arrived at Sukhi reservoir location and commenced survey on 24 June 2021. The topography survey was completed on 24 July 2021.

3.2 Equipment Setup Configuration and Calibration

All survey equipment was installed and configured on-board the survey boat as per the 'Equipment Layout Diagram' placed at <u>Appendix C</u> to this document.

The location of the various survey sensors on the survey boat is given in the 'Vessel Offset Diagram' placed at <u>Appendix B</u> to this document.

3.3 Field Calibration and Verifications


All equipment used for the survey work were calibrated and bench tested prior to their mobilisation for this task. In addition, after installation on the survey vessels, extensive calibration, verification and tests were carried out in the field before deploying them for actual data acquisition. Standard survey methods were used for carrying out these calibrations / verifications and data acquisition, as described in the following paragraphs.

Refer to <u>Appendix D</u> of this document for the 'Results of the Calibrations / Verifications of Survey Sensors'.

3.3.1 Heading Sensor Alignment

Vessel heading was obtained onboard 'Polaris' from Spatial Dual. Spatial dual features dual antenna moving baseline RTK. This enables it to provide extremely accurate heading both at rest and at movement. It's a great option for situations where magnetic heading isn't possible due to interference or where extra precision is required. The system was tested at FSINPVT workshop prior to mobilization for the survey. The performance of the system was found to be satisfactory during the period of survey.

3.3.2 Navigation System – DGNSS

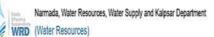
The Positioning System on board 'Polaris' was Spatial Dual. Position observations were done at Sukhi reservoir benchmark locations, using Trimble BX-992 and Spatial Dual receiver. Refer <u>Appendix E</u> for Benchmark description and <u>Appendix D</u> for details on position system verification results. The performance of the system was found to be satisfactory. Summary of the results of the position system verification is tabulated below:

Table 3.1: Results of Positioning System Verification

Positioning System Verification Results With BX-992 and Spatial Dual Receiver (Polaris)								
WGS 84, UT	VGS 84, UTM Projection, CM 075°E, Zone 43N							
Sensor	Serial No.	Easting (mE)	Northing (mN)	Latitude	Longitude	Ellipsoidal Height (m)		
Trimble BX-992	025-00009611	385 058.568	2 481 832.21	22°26'19.916″N	73°52′58.916″E	95.665		
Spatial Dual	025-272968	385 058.43	2 481 832.172	22°26'19.914″N	73°52′58.911″E	95.806		
Difference		0.138	0.038			-0.141		

3.3.3 Sound Velocity Measurements

Sound Velocity in the water column was measured in the survey area at regular intervals using sound velocity probe. Sound velocity profiles (cast) thus generated were used during post processing of SBES data.


3.3.4 Heave Compensator

Spatial dual is a high precision source for heave information. The system was tested at FSINPVT workshop prior to mobilization for the survey. The performance of the system was found to be satisfactory during the period of survey.

3.3.5 Single Beam Echosounder

Echotrac E20 dual frequency single beam echosounder was used for measuring water depths within the survey corridor. The echo sounder system was bench tested at FSINPVT workshop prior to mobilization for the survey. The echo sounder transducer was vertically side mounted on the survey boat and its draft below the waterline was measured and recorded. Heave compensator was connected to the echo sounder receiver. The echo sounder system was interfaced with the Starfix NG navigation and survey system for logging the depth vs position data. Sound velocity within water column was measured on a regular basis using sound velocity profiler and average sound velocity was entered in the top side unit of the echo sounder.

Summary of SBES Calibration Results on-board 'Polaris'						
Date	SBES Sensor Type	Average (m)	Standard Deviation			
3 April 2021	Echotrac E20 SBES	0.00	0.0034			

Table 3.2: Summary of Single Beam Echosounder Calibration Results by 'Bar Check' Method

3.4 Data Acquisition and Online Quality Control

On successful completion of mobilization and Calibration, Verification & Testing of all equipment as per the standard work practices, the survey data acquisition commenced as per the project plan to achieve the objectives of survey.

Navigation System, Heading and Bathymetry

The navigation data and vessel heading from the spatial dual, was logged continuously and monitored using the Starfix NG navigation suite. The survey data was logged in Fugro Binary Format (.FBF).

Event Markings

The on-line computer system was interfaced for closure to the analogue traces on the survey vessel. Event marks corresponding to position fixes were generated automatically from the on-line Navigation Computer interface at regular intervals of 25 m across the ground.

Survey Run-Line Logs

Survey lines were planned as per scope of work and digital pre-plots for the area was prepared prior to commencement of survey. These lines were run on the navigational computer while doing the survey and this enabled the Navigator to guide the boat along the planned survey line all the time. A survey line log was maintained which consists the particulars about the surveyed line, Date, Time, Session Number, Event Number, KP, Sensors Deployed and all the significant events occurred during the survey.

3.4.1 On-line QC of Data Logged

FSINPVT follows standard procedures and has standard formats for documenting the Quality Control of acquired data for each sensor deployed during the survey. Experienced operators were constantly monitoring the real time data quality as the survey progressed. A log of profiles was maintained, and quality of data was noted. Re-shoots of survey lines were carried out as and when required.

All computers connected to the Navigation network were synchronized with the GPS (high precision) 1PPS time signal by means of the Starfix Timing Module, allowing all data to be time stamped.

The quality of data being recorded was constantly monitored in real time and fine-tuned to obtain the best quality. The data / record obtained from each survey sensor such as Navigation, Heading, SBES and Spatial dual were quality checked and an extract of the same were made available for verification and confirmation to proceed further.

3.5 Topography Survey Control of Work

3.5.1 RTK Verification

The RTK system verification was carried out by 'Static Observations' for 30 minutes at Sukhi Dam Temporary Benchmark (SUKHI-TBM) and Temporary Benchmark 6 (TBM-06).

3.5.2 RTK Position Comparison

The RTK observed position at Temporary Benchmark 6 (TBM-06) was compared with Trimble BX-992 Receiver position. Results of the comparison is tabulated below:

Sensor	Model No.	Easting (mE)	Northing (mN)			
TBM-06 (WGS 84, UTM Projection, CM 075°E, Zone 43N)						
Trimble BX-992	025-00009611	385 058.568	2 481 832.210			
RTK Rover 1	Lynx-H6	385 058.394	2 481 832.283			
Difference	Difference		-0.073			
TBM-06 (WGS 84, UTM Projection, CM 075°E, Zone 43N)						
Trimble BX-992	025-00009611	385 058.568	2 481 832.210			
RTK Rover 2	Lynx-H6	385 058.421	2 481 832.279			
Difference	Difference		-0.069			
TBM-06 (WGS 84,	UTM Projection, CM	075°E, Zone 43N)				
Trimble BX-992	025-00009611	385 058.568	2 481 832.210			
RTK Rover 3	Lynx-H6	385 058.414	2 481 832.288			
Difference		0.154	-0.078			

Table 3.3: Results of RTK Position Comparison

Refer Appendix D for RTK comparison details.

3.5.3 Topographical Survey Methodology

The area not covered under hydrographic survey i.e., between the existing water level at the time of survey up to Full Reservoir Level (FRL)- 147.820 m has been carried out by topography survey method.

The topography survey was carried out using GNSS RTK Lynx-H6 system. The RTK system consist of two units i.e., Base receiver and Rover receiver. Corrected GPS signals are transmitted in real time from a base receiver at a known location to one or more rover receivers. Following steps were carried out while commencing and executing the topography survey operations:

- Components of Base and Rover receivers were setup at benchmark locations.
- Tripod was setup at base station i.e., at the temporary benchmark location (SUKHI-TBM) established by Fugro by levelling method and thereafter the tripod was levelled and the RTK base station was configured.
- The rover receiver along with RTK pole was installed at TBM-06 location. Static observation was carried out subsequently as part of verification.
- The Base receiver is installed at SUKHI-TBM and configured the system with known coordinates and elevation (levelling carried out by Fugro). The rover receiver position and elevation are verified by setting up the system at TBM-06.
- The level or height transfer for temporary Benchmark established by Fugro were carried out w.r.t. client supplied reference level. The levelling report is placed in <u>Appendix E</u>.
- Thereafter survey commenced by placing the rover receiver at 25 m grid interval and logging the position (easting, northing) and the elevation in relation to the base.
- Whenever the radio RTK coverage between rover receiver and base receiver is reduced, new check points were created and the base receiver was shifted to this newly created check point.
- Above procedure was followed and survey completed from the existing water line till achieving the HFL mark.

Figure 3.1: Sukhi Dam Temporary Benchmark (SUKHI-TBM)



Figure 3.2: Temporary Benchmark 6 (TBM-06)

3.6 Survey Coverage and Scope Completion

FSINPVT carried out the bathymetry and topography survey operation methodically to meet the client's objectives from this survey.

- The survey work was carried out on par with the mutually agreed scope and objectives mentioned in the <u>Section 1.6</u> of this document.
- Survey scope from existing water level up to the Full Reservoir Level (FSL)- 147.820 m, was achieved by undertaking topography survey.

All the bathymetric survey lines were run at appropriate spacing i.e., 25 m, so as to obtain data of 25 m x 25 m grid points.

4. Data Processing and Interpretation

4.1 Navigation and Positioning

- The survey data was logged in Fugro Binary format (FBF), and processed using the Starfix.Proc software. Heading, motion and position data were processed and checked to ensure good data quality. The position data for the various survey sensors were processed and plotted to allow commencement of the interpretation of the bathymetry data.
- The measured offsets for all survey sensors were entered into the navigation system and processed using Starfix.Proc to enable track charts to be plotted and 'corrected' navigation files to be integrated with other sensor data at a later stage. These included:
 - GPS position absolute of the primary & secondary positioning systems.
 - o Common Reference Point

4.2 Bathymetry Data Processing

- SBES bathymetry data was reduced to MSL, applying observed Reservoir Water Level / Height heights recorded at Dam. (Refer Figure 4.1)
- The data was filtered, cleaned, and combined to create geographically positioned bathymetric data set that has been corrected for MSL and sound speed.
- Starfix.Workbench & Mproc was used to quality check the data.

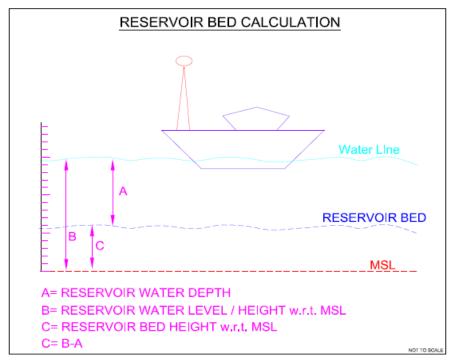
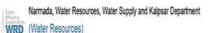



Figure 4.1: Reservoir Bed Height Calculation w.r.t. MSL

4.3 Creating Digital Terrain Model (DTM)

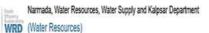
The bathymetric data and topographic data were then combined to create a vector point shapefile in GIS software. The boundary of the reservoir was then digitized around the point shapefile. Two types of boundaries were constructed. First boundary is outside the reservoir and second type of boundary consisted of the boundary around islands in the reservoir. This point shapefile was then utilized for creation of DTM. The DTM for the reservoir can be created by use of various algorithms such as Kriging, Radial Basis function, Inverse Distance Weighting (IDW) method and local polynomial function. Among these various methods, IDW can give the best interpolation accuracy for reservoirs (Shiferaw and Abebe, 2020). IDW method is a weighted average interpolation method. For every grid node, the resulting value Z will be calculated using the formula as given in (1).

$$Z = \frac{\sum_{i=1}^{n} \frac{Z_i}{r_i^p}}{\sum_{i=1}^{n} \frac{1}{r_i^p}}$$

(1)

Where:

- Z_i is the known value at point i,
- r_i is the distance from grid node to point i,
- p is the weighting power,
- n is the number of points in Search Ellipse.


Therefore, in this study IDW method has been used for the interpolation for the creation of DTM. The DTM thus created was saved in Tiff format. The created DTM was smoothed by use of various filtering operations. Thereafter, the DTM was clipped through extract by mask operations using the mask of boundary shapefiles created before. The final DTM thus obtained after clipping the DTM was then used for further analysis.

Contour maps at 1 m interval was also prepared using the DTM in Starfix.Workbench software.

4.4 Development of Area Capacity Curves

Area Capacity curves are useful tools for operational and planning purposes such as water management and sediment monitoring. By comparing the area capacity curves at different times, the rate of sedimentation in the reservoirs can be determined. These curves show the capacity and surface area of the reservoir at an indicated elevation above the reference elevation level. The elevation area capacity curves are prepared using the DTM for the reservoir site. For, this study the reference elevation level used for the preparation of Area capacity curve is 128.00 m which is the lowest bed level for the reservoir and the maximum level considered is 147.820 m which is Full Reservoir Level (FRL) of the reservoir. The incremental value for elevation used for developing these curves is kept at 0.1 m. The surface area at the successive intervals was obtained in GIS software by intersecting the DTM with horizontal planes at an interval of 0.1 m starting from the zero-bed elevation till the MWL. The incremental volume (ΔV_i) between two contours was then calculated and integrated from bottom to specified

elevation to obtain the required capacity at specified elevation. The method and formula used for volume calculation is the cone formula given by the equation 2.

$$\Delta V = \frac{h}{2} \left(A_1 + A_2 + \sqrt{A_1 A_2} \right)$$

(2)

Where, ΔV is the incremental volume between two successive elevations; h is the incremental height between two successive elevations; A1 and A2 are the areas of two successive elevations.

4.5 Sedimentation in Different Zones of Reservoir

The sediment entering into the reservoir carried by the flowing river from the upstream catchments get deposited in the reservoir with the passage of time and reduces the live as well as dead storage capacity of the reservoir. This causes the bed level near the dam to rise. Live storage is from the level MDDL to FRL. Dead storage is from Bed Level to MDDL. Gross storage is from Bed Level to FRL. The sedimentation in different zones of reservoir is shown in Figure 4.2.

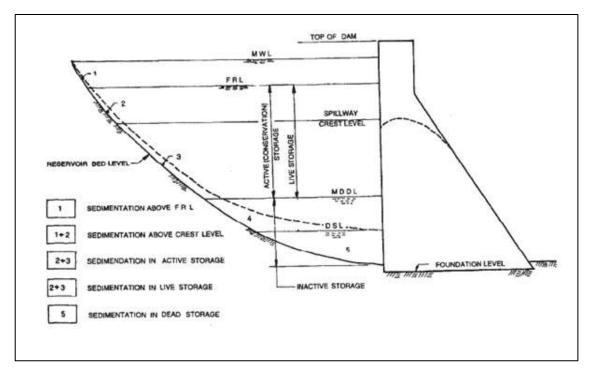


Figure 4.2: Sedimentation in different zones of reservoir (Ref: IS 5477-Part 1,1999)

The trap efficiency and the silt index has been calculated based on the methodology given in IS 12182, 1987. The gross capacity of reservoir as per present survey at FRL is 175.236 Mm³ and client supplied Mean Annual inflow is 217.10 Mm³. The values of trap efficiency were calculated using Brune's curve for the capacity inflow ratio for the reservoir. The silt index is calculated as the ratio of period of retention and flow velocity in the reservoir. The details of the calculations of period of retention and flow velocity are given in standard codes such as IS 12182, 1987. The values for Sukhi reservoir are shown in Table 5.4.

At last, sedimentation volumes are compared with sedimentation volumes from previous year surveys (if available) and rate of sedimentation, loss of capacity as well as annual loss percentage is computed and compared with the values of previous years (if available) to arrive at meaningful conclusions. The sedimentation quantities as well as loss of storage capacities, rate of siltation as well as trap efficiency and sedimentation index are shown in Section 5.3.

The Sedimentation rate and Annual % loss is calculated using the equations (3) and (4)

Sedimentation rate $(Ha m/ 100 Sq km/year) = \frac{100* loss of gross capacity (Ha m)}{Catchment Area (Sq km)*Number of years between the surveys}$ (3) $Annual \% loss = \frac{Annual Sedimentation rate (M cu m)}{Original Gross capacity of reservoir (M cu m)} x 100$ (4)

4.6 Charting the Results of Bathymetry and Topography Data

- Chart showing reservoir bed heights are provided for the current survey at 1:12000 scale.
- Chart showing contour map at 1 m interval for Sukhi reservoir is also provided at 1:12000 scale.
- Chart showing reservoir bed relief image prepared from bathymetry and topography survey data is provided at 1:12000 scale.
- L-section of the reservoir and C-section at 100 m interval are provided as soft copy.

The results of the survey were submitted as per the documents in the 'List of Deliverables' placed at <u>Appendix F</u>.

5. Survey Results – Sukhi Reservoir

Survey results are detailed in the following sections. The following text should be read in conjunction with the Charts as listed in <u>Appendix F</u> to this document.

Data acquisition for Sukhi reservoir was carried out up to Full Supply Level (FSL)/Full Reservoir Level (FRL) of 147.820 m.

5.1 Reservoir Bed Heights

The lowest reservoir bed level was found at the upstream face of the dam & it becomes less deeper as we go further upstream from the dam face.

The reservoir topography was uneven with reservoir bed level ranging 128.0 m to 147.82 m w.r.t. MSL.

The reservoir bed tends to get shallower as we go further towards north-west, north, east and south-east directions away from the reservoir dam wall within the survey area. Reservoir area is spreading towards north west and east directions. At some of the places shallow patches / islands were observed within the surveyed area.

Lowest reservoir bed level recorded was 128.0 m (385 379 mE, 2 481 928 mN) w.r.t. MSL, within the survey area.

The following figures show the gridded bathymetry and topography data for the Sukhi reservoir.

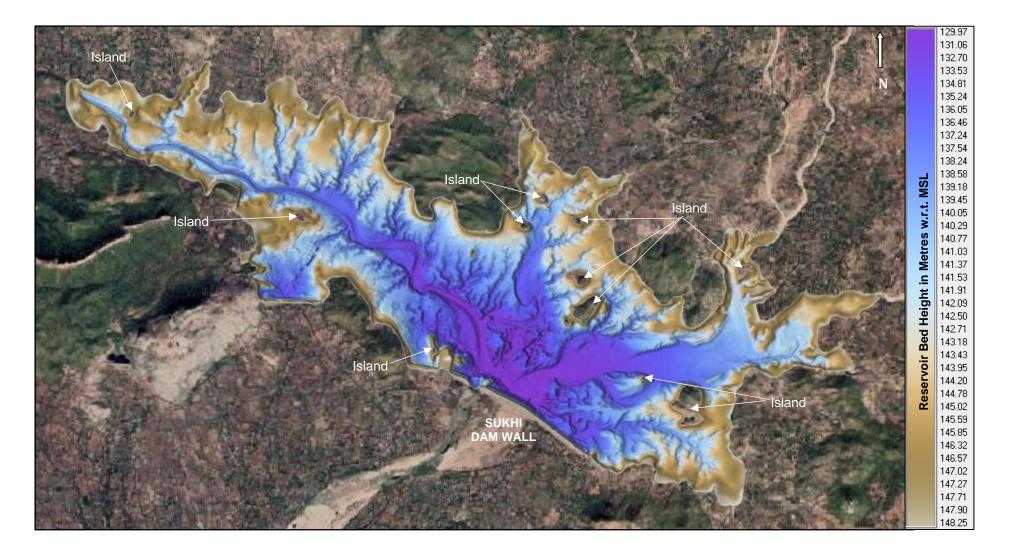


Figure 5.1: Image showing gridded SBES Bathymetry and topography data (superimposed with satellite imagery) of reservoir bed heights in metres from lowest bed level to FRL

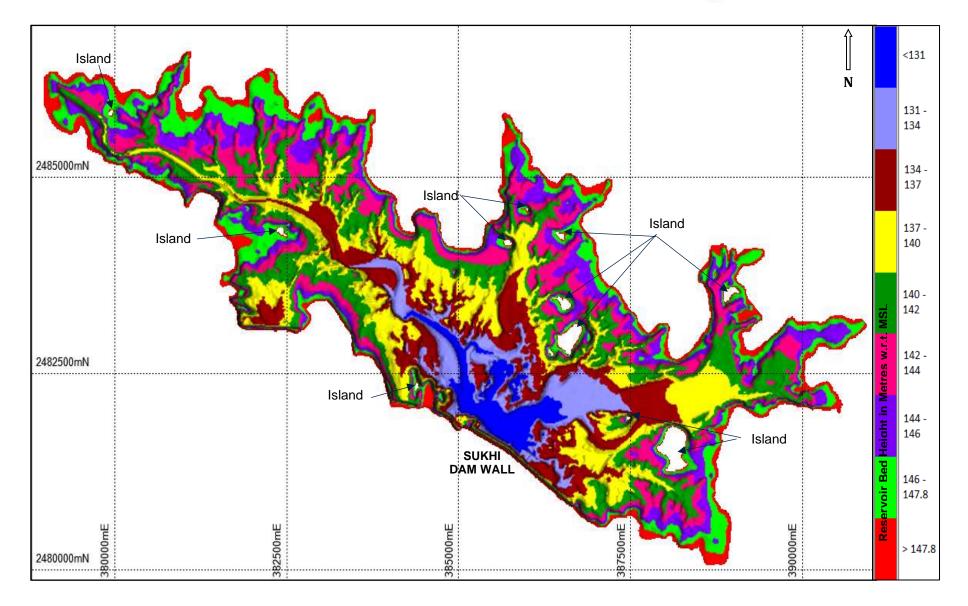


Figure 5.2: Shaded Relief Image showing gridded SBES Bathymetry and topography data of reservoir bed heights in metres from lowest bed level to FRL.

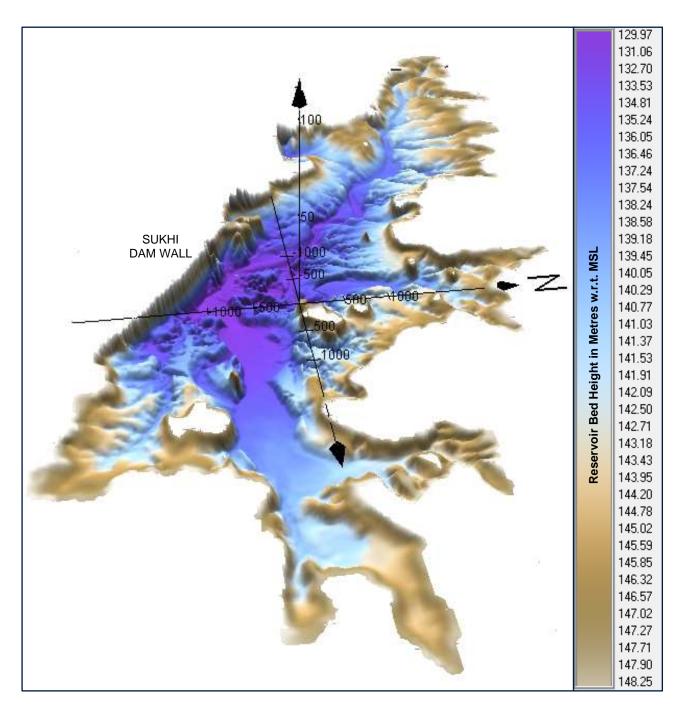


Figure 5.3: 3D view of Sukhi Reservoir

Photograph A: Northern part of Sukhi Reservoir (386590 mE, ,2484857 mN) with shallow water depth and submerged vegetation.

Photograph C: North-western part of Sukhi Reservoir (381969 mE, 2484370 mN) with shallow water depth.

Photograph B: Eastern part of Sukhi Reservoir with shallow water depth.

Photograph D: Southern part of Sukhi Reservoir (386880 mE 2481738 mN) showing rocky island.

Figure 5.4: Photographs A, B, C and D showing the northern, eastern, north-western, and southern parts within Sukhi Reservoir respectively

5.2 Elevation Area Capacity Curve (2021)

The area and capacity of the Sukhi reservoir was tabulated against the respective increasing elevation starting from lowest bed elevation (i.e., 128.00 m) up to 149.00 m (FRL is 147.82 m) at an increment of 0.1 m as shown in Table 5.1. Area capacity curve for Sukhi reservoir is shown in Figure 5.5.

Table 5.1: Elevation Area Capacity table at every 0.1 m interval starting from lowest bed level to FRL for the Survey Year 2021

Sr.Elevation (m)Area (km²)Grapacity (km²)Remarks (km²)Sr.Elevation (km²)Area (km²)Remarks (km²)10128.00<		Elevation Area Capacity Table (2021): Sukhi Reservoir			Elevation Area Capacity Table (2021): Sukhi Reservoir				khi	
2128.100.00070.000043128.200.00320.00224128.300.0110.0015128.400.0240.0036128.500.0370.0067128.600.0510.0109128.800.0980.02510128.900.1230.05611129.000.1440.05012129.100.2110.06914129.300.2760.11715129.400.3380.14716129.500.3370.17917129.600.3670.21418129.700.3990.25219129.800.4360.29419129.800.4360.29419129.800.4360.29411130.000.5100.38812130.100.5510.44113130.200.5920.49814130.300.6310.65015133.400.6110.56116130.500.7510.64117129.800.4520.5218129.700.5520.49419130.800.6510.65612<				Capacity	Remarks				Capacity	Remarks
3128.200.00320.000224128.300.0110.0015128.400.0240.0036128.500.0370.0067128.600.0510.0108128.700.0750.0169128.800.0980.02510128.900.1230.03611129.000.1640.05012129.100.2110.06913129.200.2410.09214129.300.2760.11715129.400.3080.14716129.500.3370.17917129.600.3670.21418129.700.3990.25219129.800.4360.29411130.000.5100.38812130.000.5100.38813129.200.4720.39914130.300.5510.44115130.400.5510.44116130.500.5510.44117130.600.552018130.700.56219130.800.662012130.600.7120.66413130.600.7510.761 <t< td=""><td>1</td><td>128.00</td><td>0.0001</td><td>0.00000</td><td>Bed level</td><td>33</td><td>131.20</td><td>1.003</td><td>1.291</td><td>-</td></t<>	1	128.00	0.0001	0.00000	Bed level	33	131.20	1.003	1.291	-
4128.300.0110.0015128.400.0240.0036128.500.0370.0067128.600.0510.0108128.700.0750.0169128.800.0980.02510128.900.1230.03611129.000.1640.05012129.100.2110.06913129.200.2410.09214129.300.2760.11715129.400.3080.17716129.500.3370.17917129.600.3670.21418129.700.3990.25219129.800.4360.29411130.000.5100.38812130.000.5100.38813129.200.4720.39916129.500.3370.17917129.600.3670.21418129.700.3990.25219129.800.4360.29412130.000.5100.38813130.000.5100.62514130.000.5110.64515130.400.6120.66416130.500.712 <t< td=""><td>2</td><td>128.10</td><td>0.0007</td><td>0.00004</td><td>-</td><td>34</td><td>131.30</td><td>1.051</td><td>1.393</td><td>-</td></t<>	2	128.10	0.0007	0.00004	-	34	131.30	1.051	1.393	-
5128.400.0240.0036128.500.0370.0067128.600.0510.0108128.700.0750.0169128.800.0980.02510128.900.1230.03611129.000.1640.05012129.100.2110.06913129.200.2410.09214129.300.2760.11715129.400.3080.14716129.500.3370.17917129.600.3670.21418129.700.3990.25219129.800.4360.29421130.000.5100.38822130.100.5110.44123130.200.5920.49824130.300.6310.50025130.400.6720.62526130.500.7120.64527130.600.7120.69428130.700.7330.84429130.800.6320.92621130.000.5120.64223130.200.5120.64224130.300.5130.76725130.400.672<	3	128.20	0.0032	0.00022	-	35	131.40	1.099	1.501	-
6128.500.0370.0067128.600.0510.0108128.700.0750.0169128.800.0980.02510128.900.1230.03611129.000.1640.05012129.100.2110.06913129.200.2410.09214129.300.2760.11715129.400.3080.14716129.500.3370.17917129.600.3670.21418129.700.3990.25219129.800.4360.29421130.000.5100.38822130.100.5510.44123130.200.5520.49824130.300.6310.56025130.400.6720.62526130.500.7120.69427130.600.7510.76728130.700.7930.84429133.802.2465.65829133.800.8220.92621130.600.7510.76723130.200.5520.64524130.300.6310.76725133.402.1414.75426130.500.7510.767	4	128.30	0.011	0.001	-	36	131.50	1.151	1.613	-
7128.600.0510.0108128.700.0750.0169128.800.0980.02510128.900.1230.03611129.000.1640.05012129.100.2110.06913129.200.2410.09214129.300.2760.11715129.400.3080.14716129.500.3370.17917129.600.3670.21418129.700.3990.25219129.800.4360.29411130.000.5100.38812130.100.5510.44113130.200.52214133.302.0854.54215133.400.5510.44116133.501.98417130.600.5510.44118130.700.5920.49824130.300.6310.56025133.402.1414.75426130.500.7120.69427130.600.7510.76728130.700.7930.84429133.802.3865.65820133.902.4475.90021130.800.8691.01122134.102.5786.402 </td <td>5</td> <td>128.40</td> <td>0.024</td> <td>0.003</td> <td>-</td> <td>37</td> <td>131.60</td> <td>1.203</td> <td>1.731</td> <td>-</td>	5	128.40	0.024	0.003	-	37	131.60	1.203	1.731	-
8 128.70 0.075 0.016 9 128.80 0.098 0.025 10 128.90 0.123 0.036 11 129.00 0.164 0.050 12 129.10 0.211 0.069 13 129.20 0.241 0.092 14 129.30 0.276 0.117 15 129.40 0.308 0.147 16 129.50 0.337 0.179 17 129.60 0.367 0.214 18 129.70 0.399 0.252 19 129.80 0.436 0.294 19 129.80 0.436 0.294 20 129.90 0.472 0.339 21 130.00 0.510 0.488 22 130.10 0.551 0.441	6	128.50	0.037	0.006	-	38	131.70	1.254	1.854	-
9128.800.0980.02510128.900.1230.03611129.000.1640.05012129.100.2110.06913129.200.2410.09214129.300.2760.11715129.400.3080.14716129.500.3370.17917129.600.3670.21418129.700.3990.25219129.800.4360.29419129.900.4720.33920129.900.4720.33921130.000.5100.38822130.100.5510.44123130.200.5920.49824130.300.6310.56025130.400.6720.62526130.500.7120.69427130.600.7510.76728130.700.7930.84429130.800.8320.92629130.800.8320.92620130.900.8691.01126130.500.7120.69427130.600.7510.76728130.700.7930.84429130.800.832 </td <td>7</td> <td>128.60</td> <td>0.051</td> <td>0.010</td> <td>-</td> <td>39</td> <td>131.80</td> <td>1.305</td> <td>1.982</td> <td>-</td>	7	128.60	0.051	0.010	-	39	131.80	1.305	1.982	-
10 128.90 0.123 0.036 - 11 129.00 0.164 0.050 - 12 129.10 0.211 0.069 - 13 129.20 0.241 0.092 - 14 129.30 0.276 0.117 - 15 129.40 0.308 0.147 - 16 129.50 0.337 0.179 - 16 129.50 0.337 0.179 - 17 129.60 0.367 0.214 - 18 129.70 0.399 0.252 - 19 129.80 0.436 0.294 - 19 129.80 0.436 0.294 - 20 129.90 0.472 0.339 - 21 130.00 0.510 0.388 - 22 130.10 0.551 0.441 - 23 130.20 0.692 0.498 - 24 130.30 0.611 0.560 - 25	8	128.70	0.075	0.016	-	40	131.90	1.359	2.115	-
11 129,00 0.164 0.050 - 12 129,10 0.211 0.069 - 13 129,20 0.241 0.092 - 14 129,30 0.276 0.117 - 15 129,40 0.308 0.147 - 16 129,50 0.337 0.179 - 16 129,50 0.367 0.214 - 17 129,60 0.367 0.214 - 18 129,70 0.399 0.252 - 19 129,80 0.436 0.294 - 19 129,90 0.472 0.339 - 20 129,90 0.472 0.339 - 21 130.00 0.510 0.388 - 22 130.10 0.551 0.441 - 23 130.20 0.592 0.498 - 24 130.30 0.631 0.560 - 25 130.40 0.672 0.625 - 26	9	128.80	0.098	0.025	-	41	132.00	1.415	2.254	-
12129.100.2110.069-13129.200.2410.092-14129.300.2760.117-15129.400.3080.147-16129.500.3370.179-17129.600.3670.214-18129.700.3990.252-19129.800.4360.294-19129.800.4360.294-10129.900.4720.339-12130.000.5110.438-12130.000.5110.441-13130.200.522-13130.000.5110.44112130.400.5510.44113130.500.7120.69413130.600.7120.69413130.700.7330.84413130.900.8320.92613130.900.8691.01113131.000.9111.10013131.000.9111.100	10	128.90	0.123	0.036	-	42	132.10	1.475	2.398	-
13 129.20 0.241 0.092 - 14 129.30 0.276 0.117 - 15 129.40 0.308 0.147 - 16 129.50 0.337 0.179 - 17 129.60 0.367 0.214 - 18 129.70 0.399 0.252 - 19 129.80 0.436 0.294 - 20 129.90 0.472 0.339 - 21 130.00 0.510 0.388 - 22 130.10 0.551 0.441 - 23 130.20 0.592 0.498 - 24 130.30 0.631 0.560 - 25 130.40 0.672 0.625 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28	11	129.00	0.164	0.050	-	43	132.20	1.534	2.549	-
14 129.30 0.276 0.117 15 129.40 0.308 0.147 16 129.50 0.337 0.179 17 129.60 0.367 0.214 18 129.70 0.399 0.252 19 129.80 0.436 0.294 20 129.90 0.472 0.339 21 130.00 0.510 0.388 22 130.10 0.551 0.441 23 130.20 0.625 53 133.40 2.141 4.754 24 130.30 0.631 0.560 55 133.40 2.141 4.754 25 130.40 0.672 0.625 57 133.60 2.141 4.754 26 130.50 0.712 0.694 58 133.70 2.324 5.423 27	12	129.10	0.211	0.069	-	44	132.30	1.589	2.705	-
15129.400.3080.14716129.500.3370.17917129.600.3670.21418129.700.3990.25219129.800.4360.29411130.000.5100.38812130.000.5100.38813130.200.5510.44113130.200.5920.49813130.200.5920.49813130.300.6310.56013130.400.6720.62513130.500.7120.69413130.600.7510.64413130.700.7930.84413130.700.7930.84413130.900.8691.01113131.000.9111.100	13	129.20	0.241	0.092	-	45	132.40	1.640	2.866	-
16 129.50 0.337 0.179 - 17 129.60 0.367 0.214 - 18 129.70 0.399 0.252 - 19 129.80 0.436 0.294 - 20 129.90 0.472 0.339 - 21 130.00 0.510 0.388 - 22 130.10 0.551 0.441 - 23 130.20 0.631 0.560 - 24 130.30 0.631 0.560 - 25 130.40 0.672 0.625 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 31 131.00 0.911 1.100 - </td <td>14</td> <td>129.30</td> <td>0.276</td> <td>0.117</td> <td>-</td> <td>46</td> <td>132.50</td> <td>1.694</td> <td>3.033</td> <td>-</td>	14	129.30	0.276	0.117	-	46	132.50	1.694	3.033	-
17 129.60 0.367 0.214 - 18 129.70 0.399 0.252 - 19 129.80 0.436 0.294 - 20 129.90 0.472 0.339 - 21 130.00 0.510 0.388 - 22 130.10 0.551 0.441 - 23 130.20 0.592 0.498 - 24 130.30 0.631 0.560 - 25 130.40 0.672 0.625 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.662 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 61 134.00 2.514 6.402 - 31	15	129.40	0.308	0.147	-	47	132.60	1.742	3.205	-
18 129.70 0.399 0.252 - 19 129.80 0.436 0.294 - 20 129.90 0.472 0.339 - 21 130.00 0.510 0.388 - 22 130.10 0.551 0.441 - 23 130.20 0.631 0.560 - 24 130.30 0.631 0.560 - 25 130.40 0.672 0.625 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 61 134.00 2.578 6.402 - 31 131.00 0.911 1.100 - 63 134.20 <td>16</td> <td>129.50</td> <td>0.337</td> <td>0.179</td> <td>-</td> <td>48</td> <td>132.70</td> <td>1.793</td> <td>3.381</td> <td>-</td>	16	129.50	0.337	0.179	-	48	132.70	1.793	3.381	-
19 129.80 0.436 0.294 20 129.90 0.472 0.339 21 130.00 0.510 0.388 22 130.10 0.551 0.441 23 130.20 0.592 0.498 24 130.30 0.631 0.560 25 130.40 0.672 0.625 26 130.50 0.712 0.694 27 130.60 0.712 0.694 26 130.50 0.712 0.694 27 130.60 0.751 0.767 28 130.70 0.793 0.844 29 130.80 0.832 0.926 61 134.00 2.511 6.148 - 29 130.80 0.869 1.011 31 131.00 0.911 1.100	17	129.60	0.367	0.214	-	49	132.80	1.840	3.563	-
20 129.90 0.472 0.339 - 21 130.00 0.510 0.388 - 22 130.10 0.551 0.441 - 23 130.20 0.592 0.498 - 24 130.30 0.631 0.560 - 25 130.40 0.672 0.625 - 26 130.50 0.712 0.694 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 31 131.00 0.911 1.100 -	18	129.70	0.399	0.252	-	50	132.90	1.886	3.749	-
21 130.00 0.510 0.388 22 130.10 0.551 0.441 23 130.20 0.592 0.498 24 130.30 0.631 0.560 25 130.40 0.672 0.625 26 130.50 0.712 0.694 27 130.60 0.712 0.694 28 130.70 0.712 0.694 29 130.80 0.751 0.767 29 130.80 0.832 0.926 30 130.90 0.869 1.011 31 131.00 0.911 1.100	19	129.80	0.436	0.294	-	51	133.00	1.933	3.940	-
22 130.10 0.551 0.441 - 23 130.20 0.592 0.498 - 24 130.30 0.631 0.560 - 25 130.40 0.672 0.625 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 31 131.00 0.911 1.100 -	20	129.90	0.472	0.339	-	52	133.10	1.981	4.136	-
23 130.20 0.592 0.498 - 24 130.30 0.631 0.560 - 25 130.40 0.672 0.625 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 61 134.00 2.578 6.402 - 31 131.00 0.911 1.100 - 63 134.20 2.649 6.664 -	21	130.00	0.510	0.388	-	53	133.20	2.031	4.337	-
24 130.30 0.631 0.560 - 25 130.40 0.672 0.625 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 61 134.20 2.578 6.402 - 63 134.20 2.649 6.664 -	22	130.10	0.551	0.441	-	54	133.30	2.085	4.542	-
25 130.40 0.672 0.625 - 26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 61 134.00 2.578 6.402 - 63 134.20 2.649 6.664 -	23	130.20	0.592	0.498	-	55	133.40	2.141	4.754	-
26 130.50 0.712 0.694 - 27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 61 134.00 2.578 6.402 - 63 134.20 2.649 6.664 -	24	130.30	0.631	0.560	-	56	133.50	2.199	4.971	-
27 130.60 0.751 0.767 - 28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 61 134.00 2.578 6.402 - 63 134.20 2.649 6.664 -	25	130.40	0.672	0.625	-	57	133.60	2.261	5.194	-
28 130.70 0.793 0.844 - 29 130.80 0.832 0.926 - 30 130.90 0.869 1.011 - 31 131.00 0.911 1.100 -	26	130.50	0.712	0.694	-	58	133.70	2.324	5.423	-
29 130.80 0.832 0.926 - 61 134.00 2.511 6.148 - 30 130.90 0.869 1.011 - 62 134.10 2.578 6.402 - 31 131.00 0.911 1.100 - 63 134.20 2.649 6.664 -	27	130.60	0.751	0.767	-	59	133.80	2.386	5.658	-
30 130.90 0.869 1.011 - 31 131.00 0.911 1.100 -	28	130.70	0.793	0.844	-	60	133.90	2.447	5.900	-
31 131.00 0.911 1.100 - 63 134.20 2.649 6.664 -	29	130.80	0.832	0.926	-	61	134.00	2.511	6.148	-
	30	130.90	0.869	1.011	-	62	134.10	2.578	6.402	-
32 131.10 0.954 1.193 - 64 134.30 2.720 6.932 -	31	131.00	0.911	1.100	-	63	134.20	2.649	6.664	-
	32	131.10	0.954	1.193	-	64	134.30	2.720	6.932	-

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **29** of 55

Narmada, Water Resources, Water Supply and Kalpsar Department WRD (Water Resources)

Remarks

_

-

_

_

-

-

-

-

-

_

_

_

_

_

_

_

-

-

_

_

_

-

_

_

_

-

-

-

_

-

_

-

_

-

-

-

_

-

_

-

UGRO

(2021): Sukhi

Gross Capacity

[Mm³] 26.808

27.544

28.294

29.058

29.838

30.634

31.444

32.270

33.110

33.965

34.835

35.720

36.620

37.535

38.464

39.410

40.371

41.348

42.342

43.353

44.381

45.425

46.486

47.566

48.664

49.781

50.918

52.075

53.252

54.453

55.678

56.928

58.206

59.511

60.842

62.200

63.584

64.995

66.431

67.892

	tion Area Ca	pacity Tab	le (2021): Su	khi		evation Area C	Capacity T
Reser	rvoir				Re	servoir	
Sr. No.	Elevation [m]	Area [km²]	Gross Capacity [Mm ³]	Remarks	Sr. No		n Area [km²]
65	134.40	2.794	7.208	-	10	5 138.40	7.292
66	134.50	2.871	7.491	-	10	6 138.50	7.427
67	134.60	2.954	7.782	-	10	7 138.60	7.565
68	134.70	3.038	8.082	-	10	8 138.70	7.720
69	134.80	3.123	8.390	-	10	9 138.80	7.880
70	134.90	3.212	8.706	-	11	0 138.90	8.033
71	135.00	3.308	9.032	MDDL	11	1 139.00	8.180
72	135.10	3.412	9.368	-	11	2 139.10	8.328
73	135.20	3.520	9.715	-	11	3 139.20	8.480
74	135.30	3.636	10.073	-	11	4 139.30	8.626
75	135.40	3.756	10.442	-	11	5 139.40	8.775
76	135.50	3.870	10.824	-	11	6 139.50	8.923
77	135.60	3.983	11.216	-	11	7 139.60	9.073
78	135.70	4.090	11.620	-	11	8 139.70	9.222
79	135.80	4.190	12.034	-	11	9 139.80	9.374
80	135.90	4.287	12.458	-	12	0 139.90	9.528
81	136.00	4.389	12.891	-	12	1 140.00	9.691
82	136.10	4.496	13.336	-	12	2 140.10	9.860
83	136.20	4.608	13.791	-	12	3 140.20	10.028
84	136.30	4.714	14.257	-	12	4 140.30	10.190
85	136.40	4.816	14.733	-	12	5 140.40	10.355
86	136.50	4.927	15.221	-	12	6 140.50	10.52
87	136.60	5.045	15.719	-	12	7 140.60	10.704
88	136.70	5.168	16.230	-	12	8 140.70	10.888
89	136.80	5.294	16.753	-	12	9 140.80	11.07
90	136.90	5.414	17.288	-	13	0 140.90	11.270
91	137.00	5.535	17.836	-	13	1 141.00	11.46
92	137.10	5.661	18.396	-	13	2 141.10	11.668
93	137.20	5.789	18.968	-	13	3 141.20	11.883
94	137.30	5.913	19.553	-	13	4 141.30	12.12
95	137.40	6.037	20.151	-	13	5 141.40	12.363
96	137.50	6.158	20.760	-	13	6 141.50	12.646
97	137.60	6.282	21.382	-	13	7 141.60	12.913
98	137.70	6.408	22.017	-	13	8 141.70	13.185
99	137.80	6.534	22.664	-	13	9 141.80	13.444
100	137.90	6.659	23.324	-	14	0 141.90	13.71(
101	138.00	6.782	23.996	-	14	1 142.00	13.97
102	138.10	6.905	24.680	-	14	2 142.10	14.245
103	138.20	7.028	25.377	-	14	3 142.20	14.49
104	138.30	7.156	26.086	-	14	4 142.30	14.729

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **30** of 55

Narmada, Water Resources, Water Supply and Kalpsar Department WRD (Water Resources)

Elevat	tion Area Ca	pacity Tab	ıle (2021): Su	khi
Reser	voir		Gross	
Sr. No.	Elevation [m]	Area [km²]	Capacity [Mm ³]	Remarks
145	142.40	14.959	69.377	-
146	142.50	15.167	70.883	-
147	142.60	15.371	72.410	-
148	142.70	15.564	73.957	-
149	142.80	15.754	75.523	-
150	142.90	15.938	77.107	-
151	143.00	16.112	78.710	-
152	143.10	16.275	80.329	-
153	143.20	16.433	81.964	-
154	143.30	16.588	83.616	-
155	143.40	16.747	85.282	-
156	143.50	16.906	86.965	-
157	143.60	17.073	88.664	-
158	143.70	17.228	90.379	-
159	143.80	17.383	92.110	-
160	143.90	17.535	93.855	-
161	144.00	17.690	95.617	-
162	144.10	17.842	97.393	-
163	144.20	18.000	99.185	-
164	144.30	18.160	100.993	-
165	144.40	18.325	102.818	-
166	144.50	18.484	104.658	-
167	144.60	18.642	106.514	-
168	144.70	18.809	108.387	-
169	144.80	18.971	110.276	-
170	144.90	19.132	112.181	-
171	145.00	19.298	114.102	-
172	145.10	19.466	116.041	-
173	145.20	19.621	117.995	-
174	145.30	19.777	119.965	-
175	145.40	19.932	121.950	-
176	145.50	20.089	123.951	-
177	145.60	20.251	125.968	-
178	145.70	20.421	128.002	-
179	145.80	20.588	130.053	-
180	145.90	20.753	132.120	-
181	146.00	20.926	134.203	-
182	146.10	21.099	136.305	-
183	146.20	21.277	138.423	-
184	146.30	21.456	140.560	-

Elevation Area Capacity Table (2021): Sukhi Reservoir							
Sr. No.	Elevation [m]	Area [km²]	Gross Capacity [Mm³]	Remarks			
185	146.40	21.633	142.715	-			
186	146.50	21.804	144.886	-			
187	146.60	21.978	147.076	-			
188	146.70	22.155	149.282	-			
189	146.80	22.340	151.507	-			
190	146.90	22.534	153.751	-			
191	147.00	22.719	156.013	-			
192	147.10	22.901	158.294	-			
193	147.20	23.079	160.593				
194	147.30	23.255	162.910	-			
195	147.40	23.423	165.244	-			
196	147.50	23.594	167.595	-			
197	147.60	23.764	169.963	-			
198	147.70	23.943	172.348				
199	147.80	24.130	174.752	-			
200	147.82	24.168	175.236	FRL			
201	147.90	24.317	177.174	-			
202	148.00	24.664	179.623	-			
203	148.10	24.950	182.104	-			
204	148.20	25.185	184.611				
205	148.30	25.390	187.139	-			
206	148.40	25.550	189.686	-			
207	148.50	25.684	192.248	_			
208	148.60	25.802	194.822	_			
209	148.70	25.911	197.408				
210	148.80	26.020	200.005	-			
211	148.90	26.109	202.611	-			
212	149.00	26.190	205.226	-			

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **31** of 55

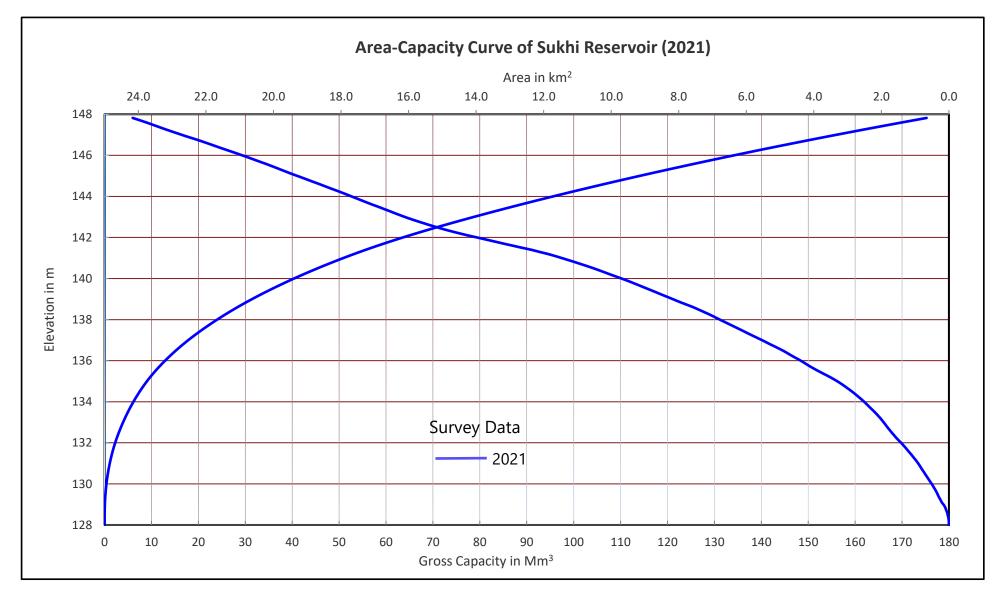


Figure 5.5: Elevation Area Capacity Curve (2021) of Sukhi Reservoir

5.3 **Comparison of Elevation Area Capacity Details**

Comparison of the elevation area capacity details for the year 2021 with the elevation area capacity for the previous year of 1987 (Original) is shown in Table 5.2. In addition, the comparison plots of elevation area capacity curves for the year 1987 and 2021 are shown in Figure 5.6.

In general, the 2021 survey results indicate that there is loss in gross storage capacity w.r.t. 1987 original project capacity.

	Elevation (w.r.t. MSL) [m]	1987 (C	original)	2021 Survey		
Sr. No		Area [km²]	Gross Capacity [Mm ³]	Area [km²]	Gross Capacity [Mm ³]	
1	128.00	-	-	0.000	0.00000	
2	128.10	-	-	0.001	0.00004	
3	128.20	-	-	0.003	0.00022	
4	128.30	-	-	0.011	0.001	
5	128.40	-	-	0.024	0.003	
6	128.50	-	-	0.037	0.006	
7	128.60	-	-	0.051	0.010	
8	128.70	-	-	0.075	0.016	
9	128.80	-	-	0.098	0.025	
10	128.90	-	-	0.123	0.036	
11	129.00	-	-	0.164	0.050	
12	129.10	-	-	0.211	0.069	
13	129.20	-	-	0.241	0.092	
14	129.30	-	-	0.276	0.117	
15	129.40	-	-	0.308	0.147	
16	129.50	-	-	0.337	0.179	
17	129.60	-	-	0.367	0.214	
18	129.70	-	-	0.399	0.252	
19	129.80	-	-	0.436	0.294	
20	129.90	-	-	0.472	0.339	
21	130.00	-	-	0.510	0.388	
22	130.10	-	-	0.551	0.441	
23	130.20	-	-	0.592	0.498	
24	130.30	-	-	0.631	0.560	

Table 5.2: Comparison of Elevation Capacity details of 2021, 1999 and 1982 data

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page 33 of 55

Narmada, Water Resources, Water Supply and Kalpsar Department WRD (Water Resources)

Sr. No (w.r.t. 25 1 26 1 27 1 28 1 29 1 30 1 31 1	Avation MSL) [m] 30.40 30.50 30.60 30.70 30.80 30.90	1987 (C Area [km ²] - - -	original) Gross Capacity [Mm³] - - -	Area [km²] 0.672 0.712	Gross Capacity [Mm ³] 0.625 0.694
Sr. No (w.r.t. 25 1 26 1 27 1 28 1 29 1 30 1 31 1	MSL) [m] 30.40 30.50 30.60 30.70 30.80	[km ²] - - -	[Mm ³] _ _	[km ²] 0.672 0.712	[Mm³] 0.625
26 1 27 1 28 1 29 1 30 1 31 1	30.50 30.60 30.70 30.80	-	-	0.712	
27 1 28 1 29 1 30 1 31 1	30.60 30.70 30.80		-		0.694
28 1 29 1 30 1 31 1	30.70		-		0.004
29 1 30 1 31 1	30.80	-		0.751	0.767
30 1 31 1			-	0.793	0.844
31 1	30.90	-	-	0.832	0.926
		-	-	0.869	1.011
22 1	31.00	-	-	0.911	1.100
32 1	31.10	-	-	0.954	1.193
33 1	31.20	-	-	1.003	1.291
34 1	31.30	-	-	1.051	1.393
35 1	31.40	-	-	1.099	1.501
36 1	31.50	-	-	1.151	1.613
37 1	31.60	-	-	1.203	1.731
38 1	31.70	-	-	1.254	1.854
39 1	31.80	-	-	1.305	1.982
40 1	31.90	-	-	1.359	2.115
41 1	32.00	-	-	1.415	2.254
42 1	32.10	-	-	1.475	2.398
43 1	32.20	-	-	1.534	2.549
44 1	32.30	-	-	1.589	2.705
45 1	32.40	-	-	1.640	2.866
46 1	32.50	-	-	1.694	3.033
47 1	32.60	-	-	1.742	3.205
48 1	32.70	-	-	1.793	3.381
49 1	32.80	-	-	1.840	3.563
50 1	32.90	-	-	1.886	3.749
51 1	33.00	-	-	1.933	3.940
52 1	33.10	-	-	1.981	4.136
53 1	33.20	-	-	2.031	4.337
54 1	33.30	-	-	2.085	4.542
55 1	33.40	-	-	2.141	4.754
56 1	33.50	-	-	2.199	4.971

Narmada, Water Resources, Water Supply and Kalpsar Department WRD (Water Resources)

		1987_(C	Priginal)	2021 Survey		
Sr. No	Elevation (w.r.t. MSL) [m]	Area [km²]	Gross Capacity [Mm ³]	Area [km²]	Gross Capacity [Mm ³]	
57	133.60	-	-	2.261	5.194	
58	133.70	-	-	2.324	5.423	
59	133.80	-	-	2.386	5.658	
60	133.90	-	-	2.447	5.900	
61	134.00	2.600	7.870	2.511	6.148	
62	134.10	2.680	8.216	2.578	6.402	
63	134.20	2.760	8.562	2.649	6.664	
64	134.30	2.840	8.908	2.720	6.932	
65	134.40	2.920	9.254	2.794	7.208	
66	134.50	3.000	9.600	2.871	7.491	
67	134.60	3.080	9.946	2.954	7.782	
68	134.70	3.160	10.292	3.038	8.082	
69	134.80	3.240	10.638	3.123	8.390	
70	134.90	3.320	10.984	3.212	8.706	
71	135.00	3.400	11.330	3.308	9.032	
72	135.10	3.480	11.807	3.412	9.368	
73	135.20	3.560	12.284	3.520	9.715	
74	135.30	3.640	12.761	3.636	10.073	
75	135.40	3.720	13.238	3.756	10.442	
76	135.50	3.800	13.715	3.870	10.824	
77	135.60	3.880	14.192	3.983	11.216	
78	135.70	3.960	14.669	4.090	11.620	
79	135.80	4.040	15.146	4.190	12.034	
80	135.90	4.120	15.623	4.287	12.458	
81	136.00	4.200	16.100	4.389	12.891	
82	136.10	4.299	16.590	4.496	13.336	
83	136.20	4.398	17.080	4.608	13.791	
84	136.30	4.497	17.570	4.714	14.257	
85	136.40	4.596	18.060	4.816	14.733	
86	136.50	4.695	18.550	4.927	15.221	
87	136.60	4.794	19.040	5.045	15.719	
88	136.70	4.893	19.530	5.168	16.230	

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **35** of 55

Narmada, Water Resources, Water Supply and Kalpsar Department WRD (Water Resources)

		1987 (C	original)	2021 Survey		
Sr. No	Elevation (w.r.t. MSL) [m]	Area [km²]	Gross Capacity [Mm ³]	Area [km²]	Gross Capacity [Mm³]	
89	136.80	4.992	20.020	5.294	16.753	
90	136.90	5.091	20.510	5.414	17.288	
91	137.00	5.190	21.000	5.535	17.836	
92	137.10	5.309	21.520	5.661	18.396	
93	137.20	5.427	22.040	5.789	18.968	
94	137.30	5.546	22.560	5.913	19.553	
95	137.40	5.664	23.080	6.037	20.151	
96	137.50	5.783	23.600	6.158	20.760	
97	137.60	5.901	24.120	6.282	21.382	
98	137.70	6.020	24.660	6.408	22.017	
99	137.80	6.138	25.160	6.534	22.664	
100	137.90	6.256	25.670	6.659	23.324	
101	138.00	6.375	26.200	6.782	23.996	
102	138.10	6.525	26.800	6.905	24.680	
103	138.20	6.675	27.400	7.028	25.377	
104	138.30	6.825	28.000	7.156	26.086	
105	138.40	6.975	28.600	7.292	26.808	
106	138.50	7.125	29.200	7.427	27.544	
107	138.60	7.275	29.800	7.565	28.294	
108	138.70	7.425	30.400	7.720	29.058	
109	138.80	7.575	31.000	7.880	29.838	
110	138.90	7.725	31.600	8.033	30.634	
111	139.00	7.875	32.200	8.180	31.444	
112	139.10	8.029	32.800	8.328	32.270	
113	139.20	8.193	33.400	8.480	33.110	
114	139.30	8.357	34.000	8.626	33.965	
115	139.40	8.491	35.066	8.775	34.835	
116	139.50	8.646	35.780	8.923	35.720	
117	139.60	8.800	36.500	9.073	36.620	
118	139.70	9.006	37.387	9.222	37.535	
119	139.80	9.212	38.275	9.374	38.464	
120	139.90	9.419	39.162	9.528	39.410	

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **36** of 55

Narmada, Water Resources, Water Supply and Kalpsar Department WRD (Water Resources)

Image: constraint of the system(km²)(km²)(km²)(km²)(km²)121140.009.62540.0509.69140.371122140.109.78841.1459.86041.348123140.209.95042.24010.02842.342124140.3010.11343.33510.19043.353125140.4010.24544.43010.35544.381126140.5010.43845.52510.52545.425127140.6010.60046.62010.70446.486128140.7010.76347.71510.88847.566129140.8010.92548.81011.07748.664130140.9011.08849.90511.27049.781131141.0011.25051.00011.66852.075133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25064.00013.97163.584								
Sr. No (w.r.t. MSL) [m] Area [km²] Gross Capacity [Mm²] Area [km²] Gross Capacity [Mm²] 121 140.00 9.625 40.050 9.691 40.371 122 140.10 9.788 41.145 9.860 41.348 123 140.20 9.950 42.240 10.028 42.342 124 140.30 10.113 43.335 10.190 43.353 125 140.40 10.245 44.430 10.355 44.381 126 140.50 10.438 45.525 10.525 45.425 127 140.60 10.600 46.620 10.704 46.486 128 140.70 10.763 47.715 10.888 47.566 129 140.80 10.925 48.810 11.077 48.664 130 140.90 11.088 49.905 11.270 49.781 131 141.00 11.250 51.000 11.467 50.918 132 141.40 12.050			1987 (C	original)	2021 Survey			
122140.109.78841.1459.86041.348123140.209.95042.24010.02842.342124140.3010.11343.33510.19043.353125140.4010.24544.43010.35544.381126140.5010.43845.52510.52545.425127140.6010.60046.62010.70446.486128140.7010.76347.71510.88847.566129140.8010.92548.81011.07748.644130140.9011.08849.90511.27049.781131141.0011.25051.00011.66852.075133141.1011.45052.30011.66852.075133141.2011.65053.60012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.97163.544142142.1013.43565.30014.24564.995143142.2013.62066.60014.49166.431144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5	Sr. No					Gross Capacity [Mm³]		
123140.209.95042.24010.02842.342124140.3010.11343.33510.19043.353125140.4010.24544.43010.35544.381126140.5010.43845.52510.52545.425127140.6010.60046.62010.70446.646128140.7010.76347.71510.88847.566129140.8010.92548.81011.07748.664130140.9011.08849.90511.27049.781131141.0011.25051.00011.66852.075133141.1011.45052.30011.66852.075133141.2011.65053.60012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8013.28561.40013.97163.584142142.1013.43565.30014.24564.995143142.2013.62066.60014.49166.431144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.883147142	121	140.00	9.625	40.050	9.691	40.371		
124140.3010.11343.33510.19043.353125140.4010.24544.43010.35544.381126140.5010.43845.52510.52545.425127140.6010.60046.62010.70446.486128140.7010.76347.71510.88847.566129140.8010.92548.81011.07748.664130140.9011.08849.90511.27049.781131141.0011.25051.00011.46750.918132141.1011.45052.30011.66852.075133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.71062.200141142.0013.25064.00013.97163.584142142.1013.43565.30014.24564.995143142.2013.62066.60014.49166.431144142.3013.80567.90014.72967.822145142.4013.99069.20014.95969.37714614	122	140.10	9.788	41.145	9.860	41.348		
125140.4010.24544.43010.35544.381126140.5010.43845.52510.52545.425127140.6010.60046.62010.70446.486128140.7010.76347.71510.88847.566129140.8010.92548.81011.07748.664130140.9011.08849.90511.27049.781131141.0011.25051.00011.46750.918132141.1011.45052.30011.66852.075133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.71062.200141142.0013.25064.00013.97163.584142142.1013.43565.30014.24564.995143142.2013.62066.60014.49166.431144142.3013.80567.90014.72967.822145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.88314714	123	140.20	9.950	42.240	10.028	42.342		
126140.5010.43845.52510.52545.425127140.6010.60046.62010.70446.486128140.7010.76347.71510.88847.566129140.8010.92548.81011.07748.664130140.9011.08849.90511.27049.781131141.0011.25051.00011.46750.918132141.1011.45052.30011.66852.075133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25066.60014.49166.431142142.1013.43565.30014.24564.995143142.2013.60266.60014.99569.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.56473.95714914	124	140.30	10.113	43.335	10.190	43.353		
127140.6010.60046.62010.70446.486128140.7010.76347.71510.88847.566129140.8010.92548.81011.07748.664130140.9011.08849.90511.27049.781131141.0011.25051.00011.46750.918132141.1011.45052.30011.66852.075133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.25064.00013.97163.584142142.1013.62066.60014.49166.431144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.56473.957149142.8014.73074.40015.75475.523	125	140.40	10.245	44.430	10.355	44.381		
128140.7010.76347.71510.88847.566129140.8010.92548.81011.07748.664130140.9011.08849.90511.27049.781131141.0011.25051.00011.46750.918132141.1011.45052.30011.66852.075133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25064.00013.97163.584142142.1013.80567.90014.72967.892143142.2013.62066.60014.49166.431144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.75473.95714914	126	140.50	10.438	45.525	10.525	45.425		
129140.8010.92548.81011.07748.664130140.9011.08849.90511.27049.781131141.0011.25051.00011.46750.918132141.1011.45052.30011.66852.075133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25066.60014.49166.431142142.1013.80567.90014.72967.892143142.2013.60069.20014.95969.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.56473.957149142.8014.73074.40015.75475.523	127	140.60	10.600	46.620	10.704	46.486		
130140.9011.08849.90511.27049.781131141.0011.25051.00011.46750.918132141.1011.45052.30011.66852.075133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25066.60014.49166.431142142.1013.62066.60014.49166.431144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.56473.957149142.8014.73074.40015.75475.523	128	140.70	10.763	47.715	10.888	47.566		
131141.0011.25051.00011.46750.918132141.1011.45052.30011.66852.075133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25064.00014.24564.995143142.2013.62066.60014.49166.431144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.56473.957149142.8014.73074.40015.75475.523	129	140.80	10.925	48.810	11.077	48.664		
132 141.10 11.450 52.300 11.668 52.075 133 141.20 11.650 53.600 11.833 53.252 134 141.30 11.850 54.900 12.129 54.453 135 141.40 12.050 56.200 12.363 55.678 136 141.50 12.250 57.500 12.646 56.928 137 141.60 12.450 58.800 12.913 58.206 138 141.70 12.650 60.100 13.185 59.511 139 141.80 12.850 61.400 13.444 60.842 140 141.90 13.050 62.700 13.710 62.200 141 142.00 13.250 64.000 13.971 63.584 142 142.10 13.435 65.300 14.245 64.995 143 142.20 13.620 66.600 14.491 66.431 144 142.30 13.805 67.900 14.729 <td>130</td> <td>140.90</td> <td>11.088</td> <td>49.905</td> <td>11.270</td> <td>49.781</td>	130	140.90	11.088	49.905	11.270	49.781		
133141.2011.65053.60011.88353.252134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25064.00013.97163.584142142.1013.62066.60014.49166.431144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.56473.957149142.8014.73074.40015.75475.523	131	141.00	11.250	51.000	11.467	50.918		
134141.3011.85054.90012.12954.453135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25064.00013.97163.584142142.1013.43565.30014.24564.995143142.2013.62066.60014.49166.431144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.56473.957149142.8014.73074.40015.75475.523	132	141.10	11.450	52.300	11.668	52.075		
135141.4012.05056.20012.36355.678136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25064.00013.97163.584142142.1013.62066.60014.24564.995143142.2013.62066.60014.72967.892144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.56473.957149142.8014.73074.40015.75475.523	133	141.20	11.650	53.600	11.883	53.252		
136141.5012.25057.50012.64656.928137141.6012.45058.80012.91358.206138141.7012.65060.10013.18559.511139141.8012.85061.40013.44460.842140141.9013.05062.70013.71062.200141142.0013.25064.00013.97163.584142142.1013.43565.30014.24564.995143142.2013.62066.60014.49166.431144142.3013.80567.90014.72967.892145142.4013.99069.20014.95969.377146142.5014.17570.50015.16770.883147142.6014.36071.80015.37172.410148142.7014.54573.10015.56473.957149142.8014.73074.40015.75475.523	134	141.30	11.850	54.900	12.129	54.453		
137 141.60 12.450 58.800 12.913 58.206 138 141.70 12.650 60.100 13.185 59.511 139 141.80 12.850 61.400 13.444 60.842 140 141.90 13.050 62.700 13.710 62.200 141 142.00 13.250 64.000 13.971 63.584 142 142.10 13.435 65.300 14.245 64.995 143 142.20 13.620 66.600 14.491 66.431 144 142.30 13.805 67.900 14.729 67.892 145 142.40 13.990 69.200 14.959 69.377 146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 <td>135</td> <td>141.40</td> <td>12.050</td> <td>56.200</td> <td>12.363</td> <td>55.678</td>	135	141.40	12.050	56.200	12.363	55.678		
138 141.70 12.650 60.100 13.185 59.511 139 141.80 12.850 61.400 13.444 60.842 140 141.90 13.050 62.700 13.710 62.200 141 142.00 13.250 64.000 13.971 63.584 142 142.10 13.435 65.300 14.245 64.995 143 142.20 13.620 66.600 14.491 66.431 144 142.30 13.805 67.900 14.729 67.892 145 142.40 13.990 69.200 14.959 69.377 146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	136	141.50	12.250	57.500	12.646	56.928		
139 141.80 12.850 61.400 13.444 60.842 140 141.90 13.050 62.700 13.710 62.200 141 142.00 13.250 64.000 13.971 63.584 142 142.10 13.435 65.300 14.245 64.995 143 142.20 13.620 66.600 14.491 66.431 144 142.30 13.805 67.900 14.729 67.892 145 142.40 13.990 69.200 14.959 69.377 146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	137	141.60	12.450	58.800	12.913	58.206		
140 141.90 13.050 62.700 13.710 62.200 141 142.00 13.250 64.000 13.971 63.584 142 142.10 13.435 65.300 14.245 64.995 143 142.20 13.620 66.600 14.491 66.431 144 142.30 13.805 67.900 14.729 67.892 145 142.40 13.990 69.200 14.959 69.377 146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	138	141.70	12.650	60.100	13.185	59.511		
141 142.00 13.250 64.000 13.971 63.584 142 142.10 13.435 65.300 14.245 64.995 143 142.20 13.620 66.600 14.491 66.431 144 142.30 13.805 67.900 14.729 67.892 145 142.40 13.990 69.200 14.959 69.377 146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	139	141.80	12.850	61.400	13.444	60.842		
142 142.10 13.435 65.300 14.245 64.995 143 142.20 13.620 66.600 14.491 66.431 144 142.30 13.805 67.900 14.729 67.892 145 142.40 13.990 69.200 14.959 69.377 146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	140	141.90	13.050	62.700	13.710	62.200		
143 142.20 13.620 66.600 14.491 66.431 144 142.30 13.805 67.900 14.729 67.892 145 142.40 13.990 69.200 14.959 69.377 146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	141	142.00	13.250	64.000	13.971	63.584		
144 142.30 13.805 67.900 14.729 67.892 145 142.40 13.990 69.200 14.959 69.377 146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	142	142.10	13.435	65.300	14.245	64.995		
145 142.40 13.990 69.200 14.959 69.377 146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	143	142.20	13.620	66.600	14.491	66.431		
146 142.50 14.175 70.500 15.167 70.883 147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	144	142.30	13.805	67.900	14.729	67.892		
147 142.60 14.360 71.800 15.371 72.410 148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	145	142.40	13.990	69.200	14.959	69.377		
148 142.70 14.545 73.100 15.564 73.957 149 142.80 14.730 74.400 15.754 75.523	146	142.50	14.175	70.500	15.167	70.883		
149 142.80 14.730 74.400 15.754 75.523	147	142.60	14.360	71.800	15.371	72.410		
	148	142.70	14.545	73.100	15.564	73.957		
150 142.90 14.905 75.700 15.938 77.107	149	142.80	14.730	74.400	15.754	75.523		
	150	142.90	14.905	75.700	15.938	77.107		
151 143.00 15.100 77.000 16.112 78.710	151	143.00	15.100	77.000	16.112	78.710		
152 143.10 15.310 78.600 16.275 80.329	152	143.10	15.310	78.600	16.275	80.329		

Narmada, Water Resources, Water Supply and Kalpsar Department WRD (Water Resources)

			· · · · · · · · · · · · · · · · · · ·					
	Elevation	1987 (C	original)	2021 Survey				
Sr. No	(w.r.t. MSL) [m]	Area [km²]	Gross Capacity [Mm³]	Area [km²]	Gross Capacity [Mm ³]			
153	143.20	15.520	80.200	16.433	81.964			
154	143.30	15.730	81.800	16.588	83.616			
155	143.40	15.940	83.400	16.747	85.282			
156	143.50	16.150	85.000	16.906	86.965			
157	143.60	16.360	86.600	17.073	88.664			
158	143.70	16.570	88.200	17.228	90.379			
159	143.80	16.780	89.800	17.383	92.110			
160	143.90	16.990	91.400	17.535	93.855			
161	144.00	17.200	93.000	17.690	95.617			
162	144.10	17.442	94.715	17.842	97.393			
163	144.20	17.685	96.430	18.000	99.185			
164	144.30	17.927	98.145	18.160	100.993			
165	144.40	18.170	99.860	18.325	102.818			
166	144.50	18.412	101.575	18.484	104.658			
167	144.60	18.655	103.290	18.642	106.514			
168	144.70	18.897	105.005	18.809	108.387			
169	144.80	19.140	106.720	18.971	110.276			
170	144.90	19.383	108.435	19.132	112.181			
171	145.00	19.625	110.150	19.298	114.102			
172	145.10	19.878	112.135	19.466	116.041			
173	145.20	20.130	114.120	19.621	117.995			
174	145.30	20.383	116.705	19.777	119.965			
175	145.40	20.655	118.090	19.932	121.950			
176	145.50	20.888	120.075	20.089	123.951			
177	145.60	21.140	122.060	20.251	125.968			
178	145.70	21.393	124.045	20.421	128.002			
179	145.80	21.645	126.030	20.588	130.053			
180	145.90	21.828	128.015	20.753	132.120			
181	146.00	22.150	130.000	20.926	134.203			
182	146.10	22.390	132.250	21.099	136.305			
183	146.20	22.630	134.500	21.277	138.423			
184	146.30	22.870	136.750	21.456	140.560			

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **38** of 55

Narmada, Water Resources, Water Supply and Kalpsar Department WRD (Water Resources)

	Elevation (w.r.t. MSL) [m]	1987 (O	riginal)	2021 Survey		
Sr. No		Area [km²]	Gross Capacity [Mm ³]	Area [km²]	Gross Capacity [Mm ³]	
185	146.40	23.110	139.000	21.633	142.715	
186	146.50	23.350	141.250	21.804	144.886	
187	146.60	23.590	143.500	21.978	147.076	
188	146.70	23.830	145.750	22.155	149.282	
189	146.80	24.070	148.000	22.340	151.507	
190	146.90	24.310	150.250	22.534	153.751	
191	147.00	24.550	152.500	22.719	156.013	
192	147.10	24.845	155.000	22.901	158.294	
193	147.20	25.140	157.500	23.079	160.593	
194	147.30	25.435	160.000	23.255	162.910	
195	147.40	25.733	162.500	23.423	165.244	
196	147.50	26.100	165.000	23.594	167.595	
197	147.60	26.313	168.368	23.764	169.963	
198	147.70	26.525	171.735	23.943	172.348	
199	147.80	26.738	175.102	24.130	174.752	
200	147.82	26.950	178.470	24.168	175.236	

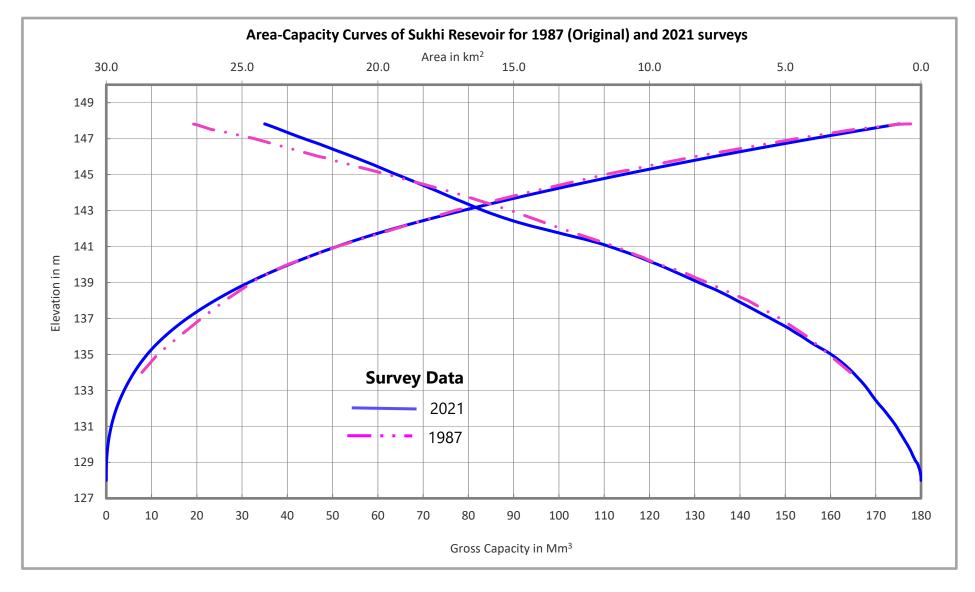


Figure 5.6: Comparison of Elevation Area capacity curves of Sukhi Reservoir for 1987(Original) and 2021 surveys

In addition to the above comparison, the live storage capacity for 2021 survey results was compared with the live storage capacity of the 2012-2013 and 1987 (Original) survey results and presented in Table 5.3 and its comparison graph is placed as Figure 5.7.

			1987 (Original)		r - 2012-2013		ear - 2021
Sr.	Elevation [m]	Area	Live Capacity	Area	Live Capacity	Area	Live Capacity
No.	wrt MSL	[km²]	[Mm ³]	[km²]	[Mm ³]	[km²]	[Mm ³]
1	135.00	3.400	0.000	3.00	0.000	3.308	0.000
2	135.10	3.480	0.477	-	-	3.412	0.336
3	135.20	3.560	0.954	-	-	3.520	0.683
4	135.30	3.640	1.431	-	-	3.636	1.040
5	135.40	3.720	1.908	-	-	3.756	1.410
6	135.50	3.800	2.385	-	-	3.870	1.791
7	135.60	3.880	2.862	-	-	3.983	2.184
8	135.70	3.960	3.339	-	-	4.090	2.587
9	135.80	4.040	3.816	-	-	4.190	3.001
10	135.90	4.120	4.293	-	-	4.287	3.425
11	136.00	4.200	4.770	4.16	3.563	4.389	3.859
12	136.10	4.299	5.260	-	-	4.496	4.303
13	136.20	4.398	5.750	-	-	4.608	4.758
14	136.30	4.497	6.240	-	-	4.714	5.225
15	136.40	4.596	6.730	-	-	4.816	5.701
16	136.50	4.695	7.220	-	-	4.927	6.188
17	136.60	4.794	7.710	-	-	5.045	6.687
18	136.70	4.893	8.200	-	-	5.168	7.197
19	136.80	4.992	8.690	-	-	5.294	7.721
20	136.90	5.091	9.180	-	-	5.414	8.256
21	137.00	5.190	9.670	5.41	8.333	5.535	8.803
22	137.10	5.309	10.190	-	-	5.661	9.363
23	137.20	5.427	10.710	-	-	5.789	9.936
24	137.30	5.546	11.230	-	-	5.913	10.521
25	137.40	5.664	11.750	-	-	6.037	11.118
26	137.50	5.783	12.270	-	-	6.158	11.728
27	137.60	5.901	12.790	-	-	6.282	12.350
28	137.70	6.020	13.330	-	-	6.408	12.984
29	137.80	6.138	13.830	-	-	6.534	13.632
30	137.90	6.256	14.340	-	-	6.659	14.291
31	138.00	6.375	14.870	6.76	14.406	6.782	14.963
32	138.10	6.525	15.470	-	-	6.905	15.648
33	138.20	6.675	16.070	-	-	7.028	16.344
34	138.30	6.825	16.670	-	-	7.156	17.053

Table 5.3: Comparison of Live Storage Capacity details of 1987 (Original), 2012-2013 and 2021 survey data

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page 41 of 55

		Year - ⁻	1987 (Original)	Yea	r - 2012-2013	Ye	ear - 2021
Sr.	Elevation [m]	Area	Live Capacity	Area	Live Capacity	Area	Live Capacity
No.	wrt MSL	[km²]	[Mm ³]	[km²]	[Mm ³]	[km ²]	[Mm ³]
35	138.40	6.975	17.270	-	-	7.292	17.776
36	138.50	7.125	17.870	-	-	7.427	18.512
37	138.60	7.275	18.470	-	-	7.565	19.261
38	138.70	7.425	19.070	-	-	7.720	20.026
39	138.80	7.575	19.670	-	-	7.880	20.806
40	138.90	7.725	20.270	-	-	8.033	21.601
41	139.00	7.875	20.870	8.21	21.877	8.180	22.412
42	139.10	8.029	21.470	-	-	8.328	23.237
43	139.20	8.193	22.070	-	-	8.480	24.078
44	139.30	8.357	22.670	-	-	8.626	24.933
45	139.40	8.491	23.736	-	-	8.775	25.803
46	139.50	8.646	24.450	-	-	8.923	26.688
47	139.60	8.800	25.170	-	-	9.073	27.588
48	139.70	9.006	26.057	-	-	9.222	28.502
49	139.80	9.212	26.945	-	-	9.374	29.432
50	139.90	9.419	27.832	-	-	9.528	30.377
51	140.00	9.625	28.720	9.75	30.841	9.691	31.338
52	140.10	9.788	29.815	-	-	9.860	32.316
53	140.20	9.950	30.910	-	-	10.028	33.310
54	140.30	10.113	32.005	-	-	10.190	34.321
55	140.40	10.245	33.100	-	-	10.355	35.348
56	140.50	10.438	34.195	-	-	10.525	36.392
57	140.60	10.600	35.290	-	-	10.704	37.454
58	140.70	10.763	36.385	-	-	10.888	38.533
59	140.80	10.925	37.480	-	-	11.077	39.631
60	140.90	11.088	38.575	-	-	11.270	40.749
61	141.00	11.250	39.670	11.38	41.394	11.467	41.886
62	141.10	11.450	40.970	-	-	11.668	43.042
63	141.20	11.650	42.270	-	-	11.883	44.220
64	141.30	11.850	43.570	-	-	12.129	45.421
65	141.40	12.050	44.870	-	-	12.363	46.645
66	141.50	12.250	46.170	-	-	12.646	47.896
67	141.60	12.450	47.470	-	-	12.913	49.174
68	141.70	12.650	48.770	-	-	13.185	50.478
69	141.80	12.850	50.070	-	-	13.444	51.810
70	141.90	13.050	51.370	-	-	13.710	53.167
71	142.00	13.250	52.670	13.11	53.631	13.971	54.552
72	142.10	13.435	53.970	-	-	14.245	55.962
73	142.20	13.620	55.270	-	-	14.491	57.399

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **42** of 55

		Year -	1987 (Original)	Yea	r - 2012-2013	Ye	ear - 2021
Sr.	Elevation [m]	Area	Live Capacity	Area	Live Capacity	Area	Live Capacity
No.	wrt MSL	[km²]	[Mm ³]	[km ²]	[Mm ³]	[km²]	[Mm ³]
74	142.30	13.805	56.570	-	-	14.729	58.860
75	142.40	13.990	57.870	-	-	14.959	60.344
76	142.50	14.175	59.170	-	-	15.167	61.851
77	142.60	14.360	60.470	-	-	15.371	63.378
78	142.70	14.545	61.770	-	-	15.564	64.924
79	142.80	14.730	63.070	-	-	15.754	66.490
80	142.90	14.905	64.370	14.94	67.648	15.938	68.075
81	143.00	15.100	65.670			16.112	69.677
82	143.10	15.310	67.270	-	-	16.275	71.297
83	143.20	15.520	68.870	-	-	16.433	72.932
84	143.30	15.730	70.470	-	-	16.588	74.583
85	143.40	15.940	72.070	-	-	16.747	76.250
86	143.50	16.150	73.670	-	-	16.906	77.932
87	143.60	16.360	75.270	-	-	17.073	79.631
88	143.70	16.570	76.870	-	-	17.228	81.347
89	143.80	16.780	78.470	-	-	17.383	83.077
90	143.90	16.990	80.070	-	-	17.535	84.823
91	144.00	17.200	81.670	16.86	83.540	17.690	86.584
92	144.10	17.442	83.385	-	-	17.842	88.361
93	144.20	17.685	85.100	-	-	18.000	90.153
94	144.30	17.927	86.815	-	-	18.160	91.961
95	144.40	18.170	88.530	-	-	18.325	93.785
96	144.50	18.412	90.245	-	-	18.484	95.626
97	144.60	18.655	91.960	-	-	18.642	97.482
98	144.70	18.897	93.675	-	-	18.809	99.354
99	144.80	19.140	95.390	-	-	18.971	101.243
100	144.90	19.383	97.105	-	-	19.132	103.149
101	145.00	19.625	98.820	18.88	101.402	19.298	105.070
102	145.10	19.878	100.805	-	-	19.466	107.008
103	145.20	20.130	102.790	-	-	19.621	108.963
104	145.30	20.383	105.375	-	-	19.777	110.932
105	145.40	20.655	106.760	-	-	19.932	112.918
106	145.50	20.888	108.745	-	-	20.089	114.919
107	145.60	21.140	110.730	-	-	20.251	116.936
108	145.70	21.393	112.715	-	-	20.421	118.970
109	145.80	21.645	114.700	-	-	20.588	121.020
110	145.90	21.828	116.685	-	-	20.753	123.087
111	146.00	22.150	118.670	21.00	121.331	20.926	125.171
112	146.10	22.390	120.920	-	-	21.099	127.272

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **43** of 55

		Year - 1	l987 (Original)	Yea	r - 2012-2013	Ye	ear - 2021
Sr.	Elevation [m]	Area	Live Capacity	Area	Live Capacity	Area	Live Capacity
No.	wrt MSL	[km²]	[Mm ³]	[km²]	[Mm ³]	[km²]	[Mm ³]
113	146.20	22.630	123.170	-	-	21.277	129.391
114	146.30	22.870	125.420	-	-	21.456	131.528
115	146.40	23.110	127.670	-	-	21.633	133.682
116	146.50	23.350	129.920	-	-	21.804	135.854
117	146.60	23.590	132.170	-	-	21.978	138.043
118	146.70	23.830	134.420	-	-	22.155	140.250
119	146.80	24.070	136.670	-	-	22.340	142.475
120	146.90	24.310	138.920	-	-	22.534	144.718
121	147.00	24.550	141.170	23.21	143.422	22.719	146.981
122	147.10	24.845	143.670	-	-	22.901	149.262
123	147.20	25.140	146.170	-	-	23.079	151.561
124	147.30	25.435	148.670	-	-	23.255	153.878
125	147.40	25.733	151.170	-	-	23.423	156.212
126	147.50	26.100	153.670	-	-	23.594	158.562
127	147.60	26.313	157.038	-	-	23.764	160.930
128	147.70	26.525	160.405	-	-	23.943	163.316
129	147.80	26.738	163.772	-	-	24.130	165.719
130	147.82	26.950	167.140	25.09	163.218	24.168	166.204

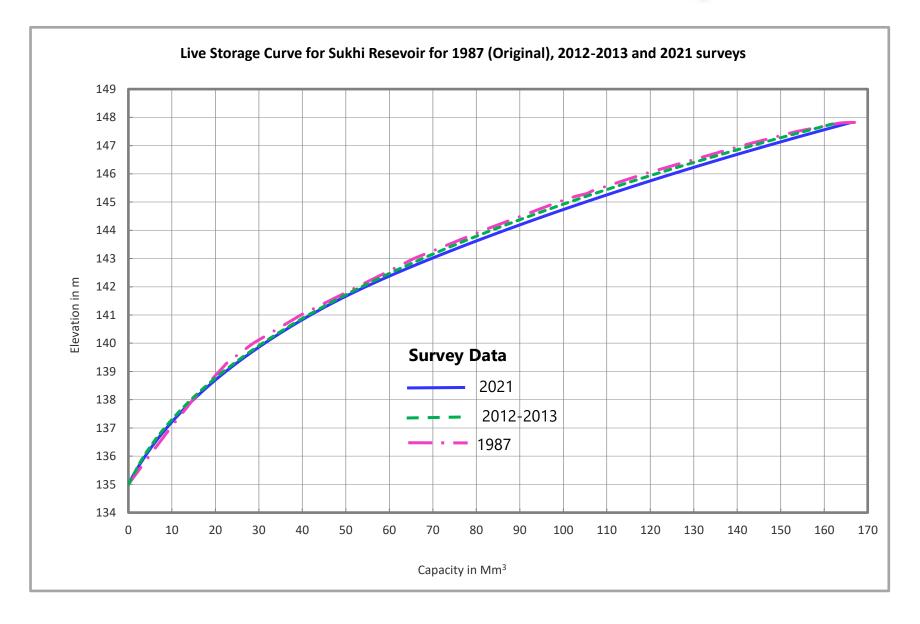


Figure 5.7: Comparison of Live capacity curves of Sukhi Reservoir for 1987(Original), 2012-2013 and 2021 surveys

5.4 Sedimentation in Reservoir

The present survey of Sukhi reservoir was carried out between April -May 2021 and June – July 2021. Original project data is for the year 1987. The catchment area considered for sedimentation studies is 411.81 km². In the present study, the age of the reservoir is considered as 34 years (1987 – 2021). As per 2021 survey, the total area of reservoir at FRL 147.82 m is 24.168 km² and the corresponding gross storage capacity is 175.236 Mm³. Table 5.4 details the gross capacity loss, rate of sedimentation and annual % loss in gross storage capacity w.r.t. original project capacity (1987).

Year	1987	2021
Storage Capacity in Mm ³		
Dead	11.330	9.032
Live	167.140	166.204
Gross	178.470	175.236
Loss of Storage Capacity in Mm ³		(w.r.t. 1987)
Dead	NA	2.298
Live	NA	0.936
Gross	NA	3.234
Sedimentation Rate in Ham/100 km ² /Year		(w.r.t. 1987)
Dead	NA	1.641
Live	NA	0.668
Gross	-	2.310
Annual % loss		(w.r.t. 1987)
Dead	-	0.038
Live	-	0.015
Gross	-	0.053
Class of reservoir as per IS -12182 (1987)	As per design	Insignificant
Volume of sediment (w.r.t. 1987) deposited	l on bed in 2021= Loss of sto	prage capacity= 3.234 Mm ³
Note: Sign Convention: -ve sign s	hows desiltation and +ve sig	gn shows siltation

Table 5.4: Sedimentation in Sukhi Reservoir based on 1987 (Original) and 2021 survey data

Table 5.5 gives the results of the Trap efficiency and Sedimentation Index calculated for Sukhi reservoir as per the methodology given in IS 12182-1987.

Table 5.5: Trap Efficiency and Sedimentation Index for Sukhi Reservoir

Trap Efficiency	Sedimentation Index
97%	6.938 x 10 ¹⁰ sec ² /m

In Table 5.4, the Project data of 1987 has been compared with 2021 survey results to understand the sedimentation in Sukhi reservoir. It may be observed that there is a reduction in the storage capacity of the reservoir due to siltation.

Table 5.6: Sedimentation Volumes from Surveys of Previous Years of 1987 and 2021 (Gross Storage Capacity)

	Veer of	Course	Devied	Reservoir	Loss of Gro	oss Capacity Sin	ce 1987 survey	Observed Rate of Sedimentation
Sr. No.	Year of Survey	Source of Data	Period (years)	Capacity (Mm ³) Gross	[Mm³]	% Cumulative	Remark	Since 1987 survey (Ha m / 100 Sq km/Yr)
1	1987 (Original)	Govt.	-	178.470	-	-	-	-
2	2021	Present survey	34	175.236	3.234	1.812	Siltation	2.310

- As per 2021 survey results, the volume of sediment deposited or the loss in gross storage capacity w.r.t. 1987 Project data is 3.234 Mm³.
- The rate of siltation in Sukhi reservoir is 0.095 Mm³/year. •
- The average rate of siltation in the Sukhi reservoir during the 34 years life span (1987 2021), . works out to 2.310 Ha m/100 sq km/year.
- The annual % loss in Sukhi reservoir during the 34 years life span is 0.053 % and hence, the • reservoir is classified as "Insignificant" category as per IS 12182 (1987).
- Trap Efficiency and sedimentation Index calculated for Sukhi reservoir as per methodology • give in IS 12182-1987 is 97% and $6.938 \times 10^{10} \text{ sec}^2/\text{m}$ respectively.

Previous survey, which was based on remote sensing technique, was carried out in the year 2012-2013 and is between MDDL to FRL. Hence, the live storage capacity of 1987, 2012-2013 and 2021 was compared. Table 5.7 and 5.8 gives the comparison results.

Year	1987	2013	2021	2021
Live Storage Capacity in Mm ³				
Live	167.140	163.218	166.204	166.204
Loss of Live Storage Capacity in Mm ³		(w.r.t. 1987)	(w.r.t. 2013)	(w.r.t. 1987)
Live		3.922	-2.986	0.936
Sedimentation Rate in Ham/100 km ² /Year		(w.r.t. 1987)	(w.r.t. 2013)	(w.r.t. 1987)
Live		3.663	-9.064	0.668
Annual % loss		(w.r.t. 1987)	(w.r.t. 2013)	(w.r.t. 1987)
Live		0.090	-0.229	0.016
Remarks		Siltation	Desiltation	Siltation
Notes [.]				

Table 5.7: Sedimentation in Sukhi Reservoir based on 1987 (Original), 2013, and 2021 survey data

Notes:

1. Sign Convention: -ve sign shows desiltation and +ve sign shows siltation

2. Since 2013 survey results is based on remote sensing technique, live capacity was only considered for comparison study

	Versef	Courses	Devied	Reservoir	Loss of Live Capacity (Sinc		e 1987 survey)	Observed Rate of Sedimentation
Sr. No.	Year of Survey	Source of Data	Period (years)	Capacity (Mm ³)	[Mm ³]	[Mm ³] % Cumulative	Remark	Since 1987 survey (Ha m / 100 Sq
S				LIVE		Cumulative		km/Yr)
1	1987 (Original)	Govt.	-	167.140	-	-	-	-
2	2012- 2013	Govt.	26	163.218	3.922	2.35	Siltation	3.663
3	2021	Present survey	34	166.204	0.936	0.56	Desiltation	0.668

Table 5.8: Sedimentation Volumes from Surveys of Previous Years of 1987, 2013 and 2021 (Live Storage Capacity)

In comparison with 2012-2013 survey, the present survey results indicate desiltation process in the reservoir. However, w.r.t. original project data (1987), 2021 survey results indicate loss in live storage capacity. The reason behind the present survey results showing siltation w.r.t. 1987 Original capacity could be due to change of upstream catchment characteristics. Also, there could be some anthropogenic activities in the catchment area which might result in siltation in the reservoir.

Table 5.9 gives the gross, live and dead storage capacity from bed level to FRL at 0.1 m interval.

Gross	, Live and D	ead storage capacity fror	m bed level to FRL at 0.1	m interval - Sukhi reserv	oir
Sr. No.	Elevation [m]	Gross Capacity [Mm ³]	Live Capacity [Mm ³]	Dead Capacity [Mm ³]	Remarks
1	128.00	0.00000		0.00000	Bed level
2	128.10	0.00004		0.00004	
3	128.20	0.00022		0.00022	
4	128.30	0.001		0.001	
5	128.40	0.003		0.003	
6	128.50	0.006		0.006	
7	128.60	0.010		0.010	
8	128.70	0.016		0.016	
9	128.80	0.025		0.025	
10	128.90	0.036		0.036	
11	129.00	0.050		0.050	
12	129.10	0.069		0.069	
13	129.20	0.092		0.092	
14	129.30	0.117		0.117	
15	129.40	0.147		0.147	
16	129.50	0.179		0.179	

Table 5.9: Gross, Live and Dead storage capacity from bed level to FRL at 0.1 m interval

Gross,	Live and De	ead storage capacity fror	n bed level to FRL at 0.1	m interval - Sukhi reserv	oir
Sr. No.	Elevation [m]	Gross Capacity [Mm ³]	Live Capacity [Mm ³]	Dead Capacity [Mm ³]	Remarks
17	129.60	0.214		0.214	
18	129.70	0.252		0.252	
19	129.80	0.294		0.294	
20	129.90	0.339		0.339	
21	130.00	0.388		0.388	
22	130.10	0.441		0.441	
23	130.20	0.498		0.498	
24	130.30	0.560		0.560	
25	130.40	0.625		0.625	
26	130.50	0.694		0.694	
27	130.60	0.767		0.767	
28	130.70	0.844		0.844	
29	130.80	0.926		0.926	
30	130.90	1.011		1.011	
31	131.00	1.100		1.100	
32	131.10	1.193		1.193	
33	131.20	1.291		1.291	
34	131.30	1.393		1.393	
35	131.40	1.501		1.501	
36	131.50	1.613		1.613	
37	131.60	1.731		1.731	
38	131.70	1.854		1.854	
39	131.80	1.982		1.982	
40	131.90	2.115		2.115	
41	132.00	2.254		2.254	
42	132.10	2.398		2.398	
43	132.20	2.549		2.549	
44	132.30	2.705		2.705	
45	132.40	2.866		2.866	
46	132.50	3.033		3.033	
47	132.60	3.205		3.205	
48	132.70	3.381		3.381	
49	132.80	3.563		3.563	
50	132.90	3.749		3.749	
51	133.00	3.940		3.940	
52	133.10	4.136		4.136	
53	133.20	4.337		4.337	
54	133.30	4.542		4.542	
55	133.40	4.754		4.754	
56	133.50	4.971		4.971	
57	133.60	5.194		5.194	

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **49** of 55

Gross, Live and Dead storage capacity from bed level to FRL at 0.1 m interval - Sukhi reservoir Sr. Elevation Contraction Structure and Structure and Contraction Structure and Structur								
Sr. No.	Elevation [m]	Gross Capacity [Mm ³]	Live Capacity [Mm ³]	Dead Capacity [Mm ³]	Remarks			
58	133.70	5.423		5.423				
59	133.80	5.658		5.658				
60	133.90	5.900		5.900				
61	134.00	6.148		6.148				
62	134.10	6.402		6.402				
63	134.20	6.664		6.664				
64	134.30	6.932		6.932				
65	134.40	7.208		7.208				
66	134.50	7.491		7.491				
67	134.60	7.782		7.782				
68	134.70	8.082		8.082				
69	134.80	8.390		8.390				
70	134.90	8.706		8.706				
71	135.00	9.032		9.032	MDDL			
72	135.10	9.368	0.336	9.032				
73	135.20	9.715	0.683	9.032				
74	135.30	10.073	1.040	9.032				
75	135.40	10.442	1.410	9.032				
76	135.50	10.824	1.791	9.032				
77	135.60	11.216	2.184	9.032				
78	135.70	11.620	2.587	9.032				
79	135.80	12.034	3.001	9.032				
80	135.90	12.458	3.425	9.032				
81	136.00	12.891	3.859	9.032				
82	136.10	13.336	4.303	9.032				
83	136.20	13.791	4.758	9.032				
84	136.30	14.257	5.225	9.032				
85	136.40	14.733	5.701	9.032				
86	136.50	15.221	6.188	9.032				
87	136.60	15.719	6.687	9.032				
88	136.70	16.230	7.197	9.032				
89	136.80	16.753	7.721	9.032				
90	136.90	17.288	8.256	9.032				
91	137.00	17.836	8.803	9.032				
92	137.10	18.396	9.363	9.032				
93	137.20	18.968	9.936	9.032				
94	137.30	19.553	10.521	9.032				
95	137.40	20.151	11.118	9.032				
96	137.50	20.760	11.728	9.032				
97	137.60	21.382	12.350	9.032				
98	137.70	22.017	12.984	9.032				

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **50** of 55

Sr.	Elevation	ead storage capacity from			
No.	[m]	Gross Capacity [Mm ³]	Live Capacity [Mm ³]	Dead Capacity [Mm ³]	Remarks
99	137.80	22.664	13.632	9.032	
100	137.90	23.324	14.291	9.032	
101	138.00	23.996	14.963	9.032	
102	138.10	24.680	15.648	9.032	
103	138.20	25.377	16.344	9.032	
104	138.30	26.086	17.053	9.032	
105	138.40	26.808	17.776	9.032	
106	138.50	27.544	18.512	9.032	
107	138.60	28.294	19.261	9.032	
108	138.70	29.058	20.026	9.032	
109	138.80	29.838	20.806	9.032	
110	138.90	30.634	21.601	9.032	
111	139.00	31.444	22.412	9.032	
112	139.10	32.270	23.237	9.032	
113	139.20	33.110	24.078	9.032	
114	139.30	33.965	24.933	9.032	
115	139.40	34.835	25.803	9.032	
116	139.50	35.720	26.688	9.032	
117	139.60	36.620	27.588	9.032	
118	139.70	37.535	28.502	9.032	
119	139.80	38.464	29.432	9.032	
120	139.90	39.410	30.377	9.032	
121	140.00	40.371	31.338	9.032	
122	140.10	41.348	32.316	9.032	
123	140.20	42.342	33.310	9.032	
124	140.30	43.353	34.321	9.032	
125	140.40	44.381	35.348	9.032	
126	140.50	45.425	36.392	9.032	
127	140.60	46.486	37.454	9.032	
128	140.70	47.566	38.533	9.032	
129	140.80	48.664	39.631	9.032	
130	140.90	49.781	40.749	9.032	
131	141.00	50.918	41.886	9.032	
132	141.10	52.075	43.042	9.032	
133	141.20	53.252	44.220	9.032	
134	141.30	54.453	45.421	9.032	
135	141.40	55.678	46.645	9.032	
136	141.50	56.928	47.896	9.032	
137	141.60	58.206	49.174	9.032	
138	141.70	59.511	50.478	9.032	
139	141.80	60.842	51.810	9.032	

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **51** of 55

Gross, Live and Dead storage capacity from bed level to FRL at 0.1 m interval - Sukhi reservoir						
Sr.	Elevation	Gross Capacity [Mm ³]	Live Capacity [Mm ³]	Dead Capacity [Mm ³]	Remarks	
No. 140	[m] 141.90	62.200	53.167	9.032		
141	142.00	63.584	54.552			
142	142.10	64.995	55.962	9.032		
143	142.20	66.431	57.399	9.032		
144	142.30	67.892	58.860	9.032		
145	142.40	69.377	60.344	9.032		
146	142.50	70.883	61.851	9.032		
147	142.60	72.410	63.378	9.032		
148	142.70	73.957	64.924	9.032		
149	142.80	75.523	66.490	9.032		
150	142.90	77.107	68.075	9.032		
151	143.00	78.710	69.677	9.032		
152	143.10	80.329	71.297	9.032		
153	143.20	81.964	72.932	9.032		
154	143.30	83.616	74.583	9.032		
155	143.40	85.282	76.250	9.032		
156	143.50	86.965	77.932	9.032		
157	143.60	88.664	79.631	9.032		
158	143.70	90.379	81.347	9.032		
159	143.80	92.110	83.077	9.032		
160	143.90	93.855	84.823	9.032		
161	144.00	95.617	86.584	9.032		
162	144.10	97.393	88.361	9.032		
163	144.20	99.185	90.153	9.032		
164	144.30	100.993	91.961	9.032		
165	144.40	102.818	93.785	9.032		
166	144.50	104.658	95.626	9.032		
167	144.60	106.514	97.482	9.032		
168	144.70	108.387	99.354	9.032		
169	144.80	110.276	101.243	9.032		
170	144.90	112.181	103.149	9.032		
171	145.00	114.102	105.070	9.032		
172	145.10	116.041	107.008	9.032		
173	145.20	117.995	108.963	9.032		
174	145.30	119.965	110.932	9.032		
175	145.40	121.950	112.918	9.032		
176	145.50	123.951	114.919	9.032		
177	145.60	125.968	116.936	9.032		
178	145.70	128.002	118.970	9.032		
179	145.80	130.053	121.020	9.032		
180	145.90	132.120	123.087	9.032		

JHYD20-174630-Volume 8-Sukhi Reservoir/R1 [01] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **52** of 55

Gross, Live and Dead storage capacity from bed level to FRL at 0.1 m interval - Sukhi reservoir						
Sr. No.	Elevation [m]	Gross Capacity [Mm ³]	Live Capacity [Mm ³]	Dead Capacity [Mm ³]	Remarks	
181	146.00	134.203	125.171	9.032		
182	146.10	136.305	127.272	9.032		
183	146.20	138.423	129.391	9.032		
184	146.30	140.560	131.528	9.032		
185	146.40	142.715	133.682	9.032		
186	146.50	144.886	135.854	9.032		
187	146.60	147.076	138.043	9.032		
188	146.70	149.282	140.250	9.032		
189	146.80	151.507	142.475	9.032		
190	146.90	153.751	144.718	9.032		
191	147.00	156.013	146.981	9.032		
192	147.10	158.294	149.262	9.032		
193	147.20	160.593	151.561	9.032		
194	147.30	162.910	153.878	9.032		
195	147.40	165.244	156.212	9.032		
196	147.50	167.595	158.562	9.032		
197	147.60	169.963	160.930	9.032		
198	147.70	172.348	163.316	9.032		
199	147.80	174.752	165.719	9.032		
200	147.82	175.236	166.204	9.032	FRL	

Following table shows the summary of the results of the previous hydrography survey carried out in the Sukhi reservoir.

Table 5.10: Summary of previous survey (Live Storage Capacity)

Year of Survey	Original survey (1987)	Hydrograph survey (1997)	Hydrograph survey (1999)	Hydrograph survey (2005)	Hydrograph survey (2005)
Live capacity in Mm ³	167.14	156.08	164.24	167.213	166.204
Cumulative loss in Mm ³		11.06	2.9	-0.073	0.936
Cumulative loss %		6.62	1.74	N/A	0.56

6. Conclusions

- The reservoir topography was uneven, with reservoir bed level ranging from 128.0 m to 147.82 m w.r.t. MSL. The lowest reservoir bed level 128.0 m was found near the upstream face of the dam boundary and it becomes shallower as we go further upstream from the dam face. Also, the reservoir bed tends to get shallower as we go further in north-west, north, east and south-east directions away from the dam wall within the survey area.
- Current survey results indicate that the loss of gross storage capacity (w.r.t. 1987 project data) due to siltation in Sukhi reservoir is 3.234 Mm³. The probable reasons for the decrease of gross storage capacity could be change in hydrodynamics due to change of upstream discharges as sediment carrying capacity of the river and its tributaries. Moreover, the cause of changes could be anthropogenic intervention towards siltation of the reservoir.
- In comparison with 1987 project data, 2021 results indicate decrease in storage capacity due to siltation. The annual % loss in gross storage capacity is 0.053 % and hence, the reservoir is classified as "Insignificant" category as per IS 12182 (1987).
- The sedimentation volumes, sedimentation rates, loss of storage capacity, trap efficiency, sedimentation index have been reported in the study. Moreover, the tables for gross, live and dead storage capacity of reservoir at every 0.1 m interval from lowest bed level to FRL have been provided.

7. References

- Bengtsson, L., Herschy, R. W., & Fairbridge, R. W. (2012). Encyclopedia of Lakes and Reservoirs (Encyclopedia of Earth Sciences Series) (2012th ed.). Springer.
- Bureau of Indian Standards. (1987). *Guidelines for determination of effects of sedimentation in planning and performance of reservoirs* (IS 12182 : 1987 ed.). Bureau of Indian Standards.
- Bureau of Indian Standards. (1999). Indian Standard Fixing the Capacities of Reservoirs Methods Part 1 General Requirements (IS 5477 Part 1: 1999). Bureau of Indian Standards.
- Das, S. & Saha, T. K. (2001). Status of Precambrian granitic rocks in Gujarat. The Ind. Mineralo., 32: 40-41.
- Das, S., Singh, P., & Srikarni, C. (2009). A preliminary study of thermal metamorphism in the Champaner Group of rocks in Panchmahals and Vadodara districts of Gujarat. Indian Journal of Geosciences, 63(4), 373–382.
- India-WRIS. (2014). Narmada Basin (Version 2.0 ed.). Ministry of Water Resources, Government of India.
- Kumar, M. D., Reddy, V. R., V., & James, A. J. (2019). From Catchment Management to Managing River Basins. Elsevier Gezondheidszorg.
- Schellenberg, G., Donnelly, R. C., Holder, C., & Ahsan, R. (2017). Dealing With Sediment -Effects on Dams and Hydropower Generation. *HRW Hydro Review Worldwide*, *25*(1), 6–13.
- Schleiss, A. J., Franca, M. J., Juez, C., & de Cesare, G. (2016). Reservoir sedimentation. *Journal of Hydraulic Research*, *54*(6), 595–614. https://doi.org/10.1080/00221686.2016.1225320
- Shiferaw, M., & Abebe, R. (2020). Examining Reservoir Sedimentation and Estimating Dam Stockpiling Limit Utilizing Bathymetry Overview: A Contextual Investigation of Abrajit Dam, North Gojjam Sub-basin, Blue Nile basin, Ethiopia. *Journal of the Indian Society of Remote Sensing*, 48(9), 1313–1323. https://doi.org/10.1007/s12524-020-01159-8
- Shrimali, N. J. (2017). Study and Analysis of Groundwater Level Variation in Catchment of Bambela Check Dam on River Machhan. *IJIRST –International Journal for Innovative Research in Science & Technology*, 4(1), 8–12.

Appendix A

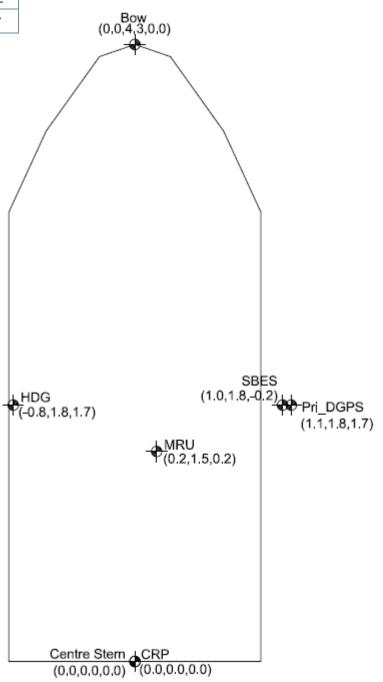
Diary of Events

(01 page)

Diary of Events (Bathymetry and Topography Survey)				
Date	Events			
Bathymetry Survey				
30 March 2021	Survey personnel with survey boat 'Polaris' reached Sukhi reservoir.			
31 March 2021	Polaris deployed on Sukhi reservoir			
1 April 2021	Mobilization commenced.			
2 April 2021	Mobilization in progress.			
3 April 2021	Mobilization completed. Calibration/verification Mobilization commenced and completed. Bathymetry survey commenced.			
4 April 2021 – 4 May 2021	Bathymetry Survey continued.			
5 May 2021	Bathymetry Survey completed			
6 May 2021	Waiting for office clearance for demob from Sukhi dam.			
7 May 2021	Demobilization started.			
8 May 2021	Demobilization completed.			
9 May 2021	Transported equipment and Polaris to Karjan Dam Site.			
Topography Survey				
24 June 2021	Topography survey team with equipment reached Sukhi Dam. Mobilisation and calibration commenced and completed.			
25 June 2021	Topography survey commenced			
26 -28 June 2021	Topography survey continued.			
29 June - 8 July 2021	Topography survey suspended as survey team facing health issues.			
9 July 2021	Topography survey resumed.			
10-23 July 2021	Topography survey continued.			
24 July 2021	Topography survey completed.			

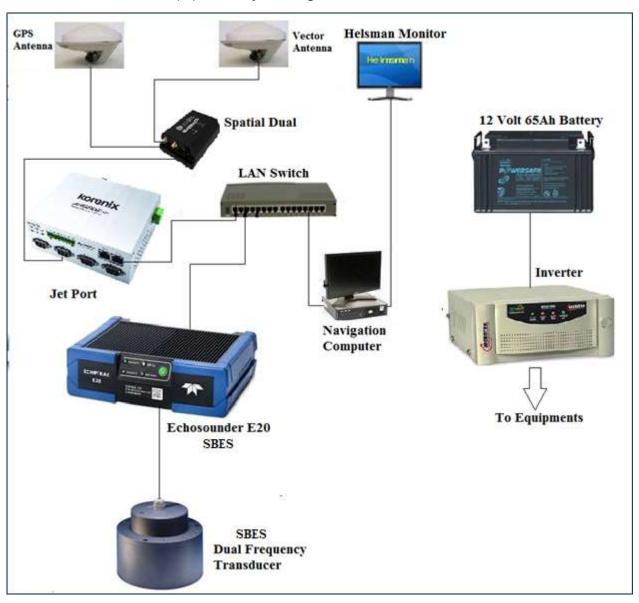
Appendix B

Survey Vessel Sensor Offsets


(01 Page)

Sensor Offsets: Polaris				
Starfix.Suite Name	X [m]	Y [m]	Z [m]	
CRP	0.00	0.00	0.00	
Centre Stern	0.00	0.00	0.00	
Bow	0.00	4.26	0.00	
Pri_DGPS	1.08	1.82	1.77	
HDG	-0.84	1.82	1.77	
SBES	1.02	1.77	-0.22	
MRU	0.2	1.45	0.17	

Survey Vessel 'Polaris' Sensor Offset Diagram


Appendix C

Equipment Layout Diagram

(01 Page)

Equipment Layout Diagram onboard Polaris

Appendix D

Results of Field Calibrations /

Verifications

(18 pages)

FUGRO SURVEY (INDIA) PVT. LTD.

Diagram Report of SUKHI-TBM

Job No. :	J-HYD-20-174630	Job Name:	Bathymetric Survey
Station Name:	SUKHI-TBM	Location:	Gujarat, West Coast of India
Party Chief :	Arpit Bose	Job Engineer/Surveyor :	Mathiazhagan V.
Date of Observation: (Date & Time)	02-04-2021 & 11:22hrs	End of Observation: (Date & Time)	02-04-2021 & 11:52hrs

1. Station Name: SUKHI-TBM.

Positioning System Verification Results						
	World Geodetic System 84, UTM Projection, CM 075º East, Zone 43 North					
Sensor	Serial No.	Starfix.Seis Name	Method	File Type	Mean Differences	SD
TRIMBLE BX992 RECEIVER	025- 000096 11	PRI_DGPS	Mean position report	FBF	NA	0.02

A= SUKHI-TBM Height is 153.615m

B= Antenna Height from BM 1.518m (Measured by Tape)

Ellipsoidal height of Antenna= 97.183m

Ellipsoidal Height of BM 97.183m-1.518m=95.665m

C is the center point of BM.

Position Of Antenna:-

Latitude: 22°26′19.91600″N, Longitude: 73°52′58.91618″E

Easting: 3,85,058.568m E Northing: 24,81,832.210m N

Prepared By: Arpit Bose.

Project ID	J-HYD-20-174630_SUKHI DAM		
Location	GUJRAT		
Client	Govt of Gujarat	Vessel	Tripod
Comment			

Session Name: SUKHI-TBM-v3

Records Used: 1091 of 1800

Start Time: 02 Apr 2021, 11:22:44+05:30

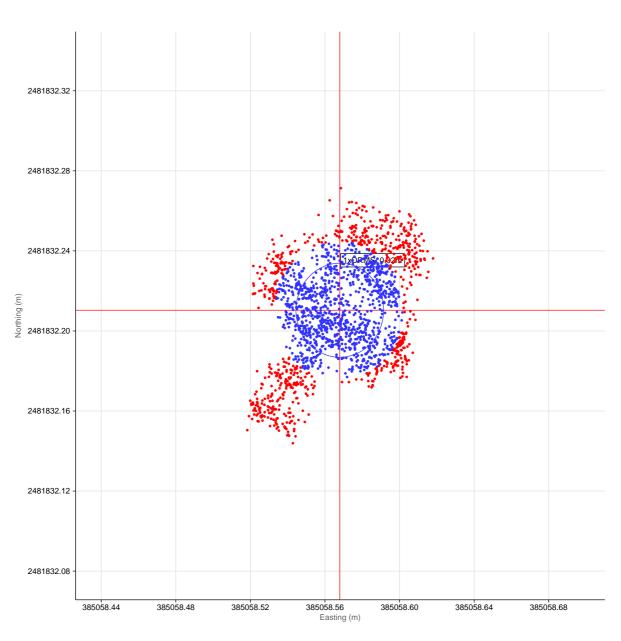
End Time: 02 Apr 2021, 11:52:43+05:30

Session Length: 00:29:59

Mean Position for Tripod CentreOfGravity				
	WGS 84 / UTM zone 43N	WGS 84(2D)		
Latitude	22°26'19.91600"N	22°26'19.91600"N		
Longitude	073°52'58.91618"E	073°52'58.91618"E		
Height	97.183m Ell.	97.183m Ell.		
Easting	3,85,058.568m E (SD: ±0.02m)			
Northing	24,81,832.210m N (SD: ±0.02m)			
Height	155.606m Ort. (SD: ±0.04m Ort.)			

Sensors	Sensor Averages	SD
Heading	0.00°T 0.00°G	±0.0°
Pitch		
Roll		
Depth (Sounder)	0.0m	±0.00m
Depth (Manual)	0.0m	N/A

Deputy Executive Engineer SUKHI DAM Govt. of Gujarat



Geodetic Parameters

Name : WGS 84 / UTM zone 43N					
EPSG Code	EPSG::32643	EPSG::32643			
Local Geodetic Datum Parameters	Local Geodetic Datum Parameters				
Datum	World Geodetic System 1984	EPSG::6326			
Ellipsoid	WGS 84				
Semi major axis	a = 63,78,137.000 m				
Inverse flattening	1/f = 298.257223563				
Local Projection Parameters					
Map Projection	Transverse Mercator				
Grid System	UTM zone 43N	UTM zone 43N EPSG::16043			
Latitude Origin	00° 00' 00.000" N	00° 00' 00.000" N			
Central Meridian	075° 00' 00.000" E	075° 00' 00.000" E			
Scale Factor on Central Meridian	0.9996	0.9996			
False Easting	500 000 m	500 000 m			
False Northing	0 m				

Scatter Plot

Mean Position

	Easting	Northing
Tripod	3,85,058.568m E	24,81,832.210m N

Time Series Plots for Tripod

FUGRO SURVEY (INDIA) PVT. LTD.

Diagram Report of SUKHI-TBM

Job No. :	J-HYD-20-174630	Job Name:	Bathymetric Survey
Station Name:	SUKHI-TBM	Location:	Gujarat, West Coast of India
Party Chief :	Arpit Bose	Job Engineer/Surveyor :	Mathiazhagan V.
Date of Observation: (Date & Time)	02-04-2021 & 13:18hrs	End of Observation: (Date & Time)	02-04-2021 & 13:48hrs

1. Station Name: SUKHI-TBM

	Positioning System Verification Results					
	World Geodetic System 84, UTM Projection, CM 075º East, Zone 43 North					ı
Sensor	Serial No.	Starfix.Seis Name	Method	File Type	Mean Differences	SD
SPATIAL DUAL RECIEVER	25- 272968	PRI_DGPS	Mean position report	FBF	NA	0.02

A= SUKHI-TBM Height is 153.615m

B= Antenna Height from BM 1.656m (Measured by Tape)

Ellipsoidal height of Antenna= 97.462m

Ellipsoidal Height of BM 97.462m-1.656m=95.806m

C is the center point of BM.

Position Of Antenna:-

Latitude: 22°26'19.91472"N, Longitude: 73°52'58.91136"E

Easting: 3,85,058.430m E Northing: 24,81,832.172m N

Prepared By: Arpit Bose.

Project ID	J-HYD-20-174630_SUKHI DAM		
Location	GUJRAT		
Client	Govt of Gujarat	Vessel	Tripod
Comment			

Session Name: SUKHI-TBM_SPD-v1

Start Time: 02 Apr 2021, 13:18:11+05:30

End Time: 02 Apr 2021, 13:48:10+05:30

Records Used: 991 of 1799

Session Length: 00:29:59

Mean Position for Tripod CentreOfGravity				
	WGS 84 / UTM zone 43N	WGS 84(2D)		
Latitude	22°26'19.91472"N	22°26'19.91472"N		
Longitude	073°52'58.91136"E	073°52'58.91136"E		
Height	97.462m Ell.	97.462m Ell.		
Easting	3,85,058.430m E (SD: ±0.02m)			
Northing	24,81,832.172m N (SD: ±0.01m)			
Height	155.886m Ort. (SD: ±0.05m Ort.)			

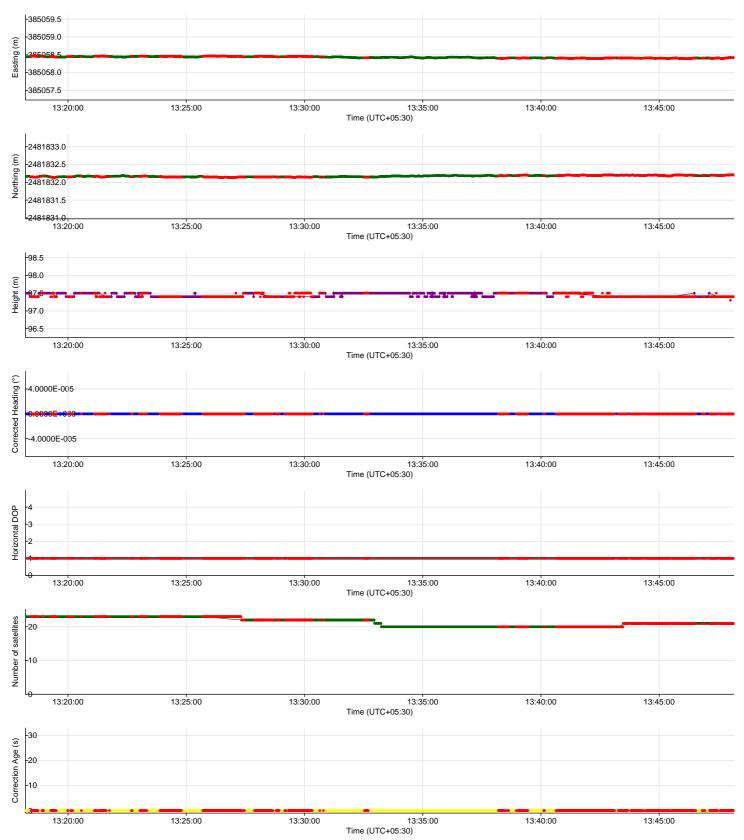
Sensors	Sensor Averages	SD
Heading	0.00°T 0.00°G	±0.0°
Pitch		
Roll		
Depth (Sounder)	0.0m	±0.00m
Depth (Manual)	0.0m	N/A

Deputy Executive Engineer SUKHI DAM Govt. of Gujarat

Geodetic Parameters

Name : WGS 84 / UTM zone 43N						
EPSG Code	EPSG::32643	EPSG::32643				
Local Geodetic Datum Parameters	Local Geodetic Datum Parameters					
Datum	World Geodetic System 1984	EPSG::6326				
Ellipsoid	WGS 84					
Semi major axis	a = 63,78,137.000 m					
Inverse flattening	1/f = 298.257223563	1/f = 298.257223563				
Local Projection Parameters						
Map Projection	Transverse Mercator					
Grid System	UTM zone 43N	UTM zone 43N EPSG::16043				
Latitude Origin	00° 00' 00.000" N	00° 00' 00.000" N				
Central Meridian	075° 00' 00.000" E	075° 00' 00.000" E				
Scale Factor on Central Meridian	0.9996	0.9996				
False Easting	500 000 m	500 000 m				
False Northing	0 m					

Scatter Plot



Mean Position

	Easting	Northing
Tripod	3,85,058.430m E	24,81,832.172m N

Time Series Plots for Tripod

FUGRO SURVEY (INDIA) PVT. LTD.

Diagram Report of твм-о6

Job No. :	J-HYD-20-174630	Job Name:	Bathymetric Survey
Station Name:	ТВМ-06	Location:	Gujarat, West Coast of India
Party Chief :	Arpit Bose	Job Engineer/Surveyor :	Mathiazhagan V.
Date of Observation: (Date & Time)	02-04-2021 & 16:16hrs	End of Observation: (Date & Time)	02-04-2021 & 16:46hrs

1. Station Name: твм-о6.

Positioning System Verification Results						
	World G	eodetic Systen	n 84, UTM F	Projection, C	M 075º East, Zone 43 North	า
Sensor	Serial No.	Starfix.Seis Name	Method	File Type	Mean Differences	SD
TRIMBLE BX992 RECEIVER	025- 000096 11	PRI_DGPS	Mean position report	FBF	NA	0.02

A= TBM-06 Height is 153.613m above MSL

B= Antenna Height from BM 1.410m (Measured by Tape)

Ellipsoidal height of Antenna= 96.997m

Ellipsoidal Height of BM 96.997m-1.410m=95.587m

C is the center point of BM

Position Of Antenna:-

Latitude: 22°26′19.66822″N, Longitude: 73°52′59.52914″E

Easting: 3,85,076.034m E Northing: 24,81,824.460m N

Prepared By: Arpit Bose.

Project ID	J-HYD-20-174630_SUKHI DAM		
Location	GUJRAT		
Client	Govt of Gujarat	Vessel	Tripod
Comment			

Session Name: TBM-06-v1

Records Used: 1115 of 1799

Start Time: 02 Apr 2021, 16:16:09+05:30

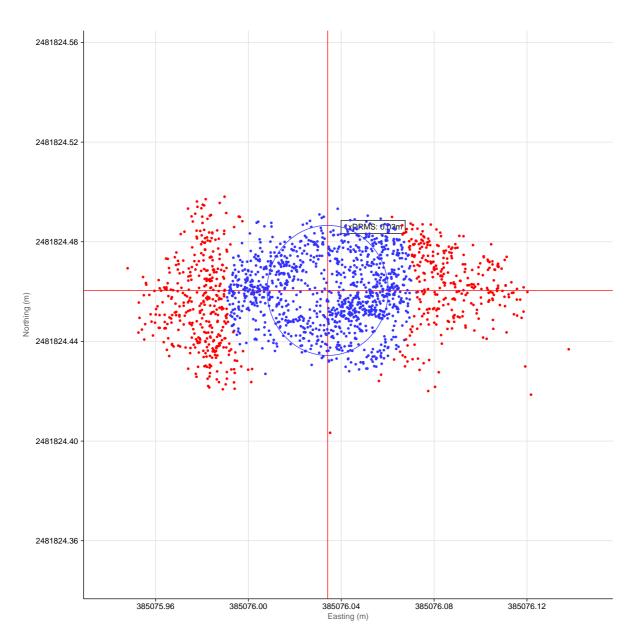
End Time: 02 Apr 2021, 16:46:08+05:30

Session Length: 00:29:59

Mean Position for Tripod CentreOfGravity				
	WGS 84 / UTM zone 43N	WGS 84(2D)		
Latitude	22°26'19.66822"N	22°26'19.66822"N		
Longitude	073°52'59.52914"E	073°52'59.52914"E		
Height	96.997m Ell.	96.997m Ell.		
Easting	3,85,076.034m E (SD: ±0.02m)			
Northing	24,81,824.460m N (SD: ±0.01m)			
Height	155.420m Ort. (SD: ±0.05m Ort.)			

Sensors	Sensor Averages	SD
Heading	0.00°T 0.00°G	±0.0°
Pitch		
Roll		
Depth (Sounder)	0.0m	±0.00m
Depth (Manual)	0.0m	N/A

Deputy Executive Engineer SUKHI DAM Govt. of Gujarat

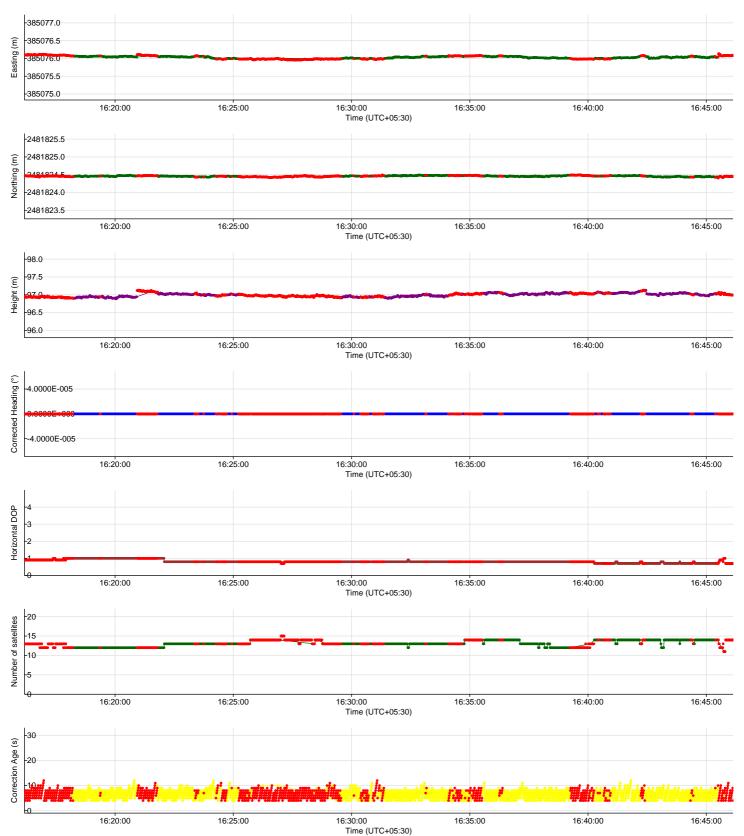


Geodetic Parameters

Name : WGS 84 / UTM zone 43N						
EPSG Code	EPSG::32643	EPSG::32643				
Local Geodetic Datum Parameters	Local Geodetic Datum Parameters					
Datum	World Geodetic System 1984	EPSG::6326				
Ellipsoid	WGS 84					
Semi major axis	a = 63,78,137.000 m					
Inverse flattening	1/f = 298.257223563	1/f = 298.257223563				
Local Projection Parameters						
Map Projection	Transverse Mercator					
Grid System	UTM zone 43N	UTM zone 43N EPSG::16043				
Latitude Origin	00° 00' 00.000" N	00° 00' 00.000" N				
Central Meridian	075° 00' 00.000" E	075° 00' 00.000" E				
Scale Factor on Central Meridian	0.9996	0.9996				
False Easting	500 000 m	500 000 m				
False Northing	0 m					

FUGRO

Scatter Plot



Mean Position

	Easting	Northing
Tripod	3,85,076.034m E	24,81,824.460m N

Time Series Plots for Tripod

Station Name: EDALWADA-TBM

Positioning System Verification With BX-992 Reciever and Spatial Dual						
	World Geodetic	System 84, UTM P	rojection, CM 075º Eas	t, Zone 43 North		
Sensor	Serial No.	Easting mE	Northing mN	Latitude	Longitude	Ellipsoidal height (m)
TRIMBLE BX992 RECEIVER	025-00009611	385058.568	2481832.21	22°26'19.916"N	73°52'58.916"E	95.665
Spatial Dual	025-272968	385058.43	2481832.172	22°26'19.914"N	73°52'58.911"E	95.806
	Difference	0.138	0.038			-0.141

JHYD20-174630-Volume 8-Sukhi Reservoir/R0 [00] | Providing Services for Conducting Bathymetric Survey of

Reservoirs of Central Gujarat Under National Hydrology Project

Appendix D

SBES Calibration SBES Barcheck Correction Table

Project No.	Project Title:	Vessel:	Place:		
J-HYD-20-174630	Bathymetry Survey	POLARIS	SUKHI DAM		
Date:	Time:	Client:			
03-Apr-21	14:30	GOV. OF GUJARAT	GOV. OF GUJARAT		
Observed By: ARPIT	BOSE	Echo Sounder Model and SL. No.	Area Depth		
Project No. J-HYD-20	-174630	E20 ECHOTRAC	14		

Echo Sounder Settings

Draft HI	Draft LO	Sou	nd Velocity
0.3	0.3	Average	Upto Depth
0.5	0.5	1493.02	9
Barcheck Frequency selected	Survey Frequency:	Manufacturer's Accuracy	
High 200 KHz	33 and 200 KHz	0.10 % of Depth	0.01 m

Obser	vations while lowe	ering	Observations while hoisting			
Bar Depth (m)	ES Reading (m)	Difference (m)	Bar Depth (m)	ES Reading (m)	Difference (m)	
1	1	0	10	10	0	
2	2.01	-0.01	9	9	0	
3	3	0	8	8	0	
4	4	0	7	7	0	
5	5	0	6	6	0	
6	6	0	5	5	0	
7	7	0	4	4	0	
8	8.01	-0.01	3	3	0	
9	9.01	-0.01	2	2	0	
10	10	0	1	1	0	
	Average	0.00		Average	0.00	
	Std. Dev	0.0048		Std. Deviation	0.0000	
				ve Average Std. Deviation	0.00 0.0034	

Partychief Arpit Bose FSINPVT Deputy Executive Engineer Sukhi Dam Govt. of Gujarat

Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat

Location Name:		Sukhi Dam	Date:	24/06/2021		Instrument Name	LYNX						
Work:		RTK Observation by Topo	graphy Team			Model no.	H6						
												_	
Station Name		Observation Duration	Easting (mE)	Northing (mN)	Local Height w.r.t MSL (m)		<u>Remarks</u>						
SUKHI-TBM	By rover 1	2 sec	385058.394	2481832.283	153.627	XYZ Value generated by RTK of Topograph	y Team, Base Station on Sukhi Dam TBM 06	ugro Provided XYZ Value	used.	Field Photo\IMG_20210624_1	. <u>73909.jpg</u>		
SUKHI-TBM	By rover 2	2 sec	385058.421	2481832.279	153.615	XYZ Value generated by RTK of Topograph	y Team, Base Station on Sukhi Dam TBM 06	ugro Provided XYZ Value	used.	Field Photo\IMG_20210624_1	74448.jpg		
SUKHI-TBM	By rover 3	2 sec	385058.414	2481832.288	153.616	XYZ Value generated by RTK of Topograph	y Team, Base Station on Sukhi Dam TBM 06	ugro Provided XYZ Value	used.	Field Photo\IMG_20210624_1	.74645.jpg		
				Fugro Provided	KYZ Value	1					Differe	nce With Fugro Pro	vided XYZ Value
Station Na	ame	Remarks	Easting (mE)	Northing (mN)	Local Height w.r.t MSL (m)	Station Name	Remarks	Easting (mE)	Northing (mN)	Local Height w.r.t MSL (m)	Easting (mE)	Northing (mN)	Local Height w.r.t MSL (m)
SUKHI-TE	BM	Fugro Provided Value	385058.568	2481832.210	153.615	SUKHI-TBM	Check by Rover 1	385058.394	2481832.283	153.627	0.174	-0.073	-0.012
						SUKHI-TBM	Check by Rover 2	385058.421	2481832.279	153.615	0.147	-0.069	0.000
						SUKHI-TBM	Check by Rover 3	385058.414	2481832.288	153.616	0.154	-0.078	-0.001
						lient Provided), SUKHI-TBM 1							
				Note: Base station	was on Sukhi Dam TBM 06	(Fugro provided XYZ value),	, 3 reading taken for 2 sec eac	h on SUKHI-TBM	by 3 rovers on pole me	ounted.			
1													
1												Prepar	ed by Arunabha Chakraborty

JHYD20-174630-Volume 8-Sukhi Reservoir/R0 [00] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Appendix D -fuaro

Appendix E

Benchmark Descriptions

(8 pages)

			Station / Bench	Mark De	scription	
-fugro		Job No. :	J_HYD_20_174630		Sta	tion Name:
•		Client :	Govt. Of Gujarat			
Fugro Survey (India)		Location :	Sukhi Dam,Gujarat			
D-222/30, TTC Indust MIDC, Nerul, Navi M		Observed By:	Arpit Bose,Mathiazhagan		SU	KHI-TBM
Pin - 400 075 (In	ndia)	Date:	02/04/2021			
		Brief Desc	ription of the Method Adopted			
1. Purpose of Establishing th	ne station	- Ref. Station f	or Bathymetric Survey of Reserv	oir and Top	ography survey	
2. Equipment Deployed	:	- Trimble BX99	92 Receiver			
3. Method Used	:	30 minutes M	lean Position for Tripod Centre C	of Gravity		
		Final Coordinat	es in WGS84 Datum/UTM zone	-43N		
GEOGRAPHICAL COORDI	NATES:		UTM COORDINATES:			CM: 75° E
LATITUDE:	22°26'19.9160	0"N	EASTING:	3,85,0	58.568m E	σ = +/- 0.02 m
LONGITUDE :	73°52'58.9161	8"E	NORTHING:	24,81,8	32.210m N	σ = +/- 0.02 m
ELLIPSOIDAL HEIGHT:	95.66	i5m	CONVERGENCE :		-0.50293 Deg	rees
HEIGHT ABOVE LAT/CD:		NA	TBM VALUE above MSL		153.615 m	
LOCATION & ACCESS :	BM established or	n Top of Dam of S	Sukhi Dam which is situated near	gate numb	er-1	
STATION MARKING : TE	BM Station is mar	ked with Red pair	nt.			
Expected durability of the Sta	tion (Years) :		02 years			
DETAILED DIAGRAM :		N				N→
2 11:28 HILLS No. 0 1 Rompura D Ritypan Still Ambulipan Chhoras Siarl Siarl Ambukhus Siarl Dhanpur- elinyz	Chhas Chhas ti eilai	Dungarbhin Grizofisi al	elitate			
	vante ita Kohos vites vi	Achhala Distant	Асфете	E SU	KHY TBP	T N

Coordinates are measured by DGPS observation. Client hasn't supplied any X,Y,Z Value SUKHI-TBM RL value is shifted from FRL(Full Reservoir Level) of the Dam

Client has confirmed that the FRL value(147.820m) is from Mean Sea Level.

Arpit Bose Party chief (FSINPVT) Deputy Executive Engineer Sukhi Dam GOVT. OF GUJRAT

		Station / Bench	Mark Description	
Tuaro	Job No. :	J_HYD_20_174630	Cta	tion Name:
	Client :	Govt. Of Gujarat	<u>- 5ta</u>	tion Name.
Fugro Survey (India) Pvt. Ltd.	Location :	Sukhi Dam,Gujarat		
D-222/30, TTC Industrial Area, MIDC, Nerul, Navi Mumbai	Observed By:	Arpit Bose,Mathiazhagan	SU	KHI-TBM
Pin - 400 075 (India)	Date:	02-04-2021		
		scription of the Method Adopted		
1. Purpose of Establishing the station	:- Ref. Station	n for Bathymetric Survey of Reserv	voir and Topography survey	•
2. Equipment Deployed	:- Trimble BX	992 Receiver		
3. Method Used	- 30 minutes	Mean Position for Tripod Centre C	Of Gravity	
	Final Coordin	nates in WGS84 Datum/UTM zon	<u>8-43N</u>	
GEOGRAPHICAL COORDINATES:		UTM COORDINATES:		CM: 75° E
LATITUDE: 22°26'1	9.91600"N	EASTING:	3,85,058.568m E	σ = +/- 0.02 m
LONGITUDE : 73°52'5	8.91618"E	NORTHING:	24,81,832.210m N	σ = +/- 0.02 m
ELLIPSOIDAL HEIGHT:	95.665m	CONVERGENCE :	-0.50293 Deg	rees
HEIGHT ABOVE LAT/CD:	NA	TBM VALUE above MSL	153.615 m	1.
LOCATION & ACCESS :	shed on Top of Dam c	of Sukhi Dam which is situated nea	r gate number-1	
STATION MARKING ; TBM Station	n is marked with Red p			
Expected durability of the Station (Yea	<u>rs) :</u>	02 years		
DETAILED DIAGRAM :	N	N Î		N
Antical States	⊂ogue 20141 Chhasi va 19112001 Punga Ut 2, arc201g 1, arc201g 1, arc201g 2, 200			
Disagaar The United The Charge of the Charge				
Anone di Sta Vent de Sta Vent	ndri) Sil ∞nogi 		SU KAR	

Coordinates are measured by DGPS observation. Client hasn't supplied any X,Y,Z Value SUKHI-TBM RL value is shifted from FRL(Full Reservoir Level) of the Dam

Client has confirmed that the FRL value(147.820m) is from Mean Sea Level.

se Y

Arpit Bose Party chief Fugro Survey India pvt Itd

Deputy Executive Engineer Sukhi Dam Govt. of gujarat

		Station / Bench	Mark Description	
-fugeo	Job No. :	J_HYD_20_174630		
	Client :	Govt. Of Gujarat	<u>Stat</u>	tion Name:
Fugro Survey (India) Pvt.	Ltd. Location :	Sukhi Dam,Gujarat		
D-222/30, TTC Industrial A		Arpit Bose,Mathiazhagan	т	BM-06
MIDC, Nerul, Navi Mumb Pin - 400 075 (India)	Date:	02/04/2021	·	
	Brief Dec	arintian of the Method Adented		
		scription of the Method Adopted		
1. Purpose of Establishing the sta	ation :- Ref. Station	n for Bathymetric Survey of Reserve	oir and Topography survey	
2. Equipment Deployed	:- Trimble BX	992 Receiver		
3. Method Used	:- 30 minutes	Mean Position for Tripod Centre C	f Gravity	
	Final Coordina	ates in WGS84 Datum/UTM zone	-43N	
GEOGRAPHICAL COORDINATE		UTM COORDINATES:		CM: 75° E
LATITUDE: 22'	°26'19.66822"N	EASTING:	3,85,076.034m E	σ = +/- 0.02 m
LONGITUDE : 73	°52'59.52914"E	NORTHING:	24,81,824.460m N	σ = +/- 0.01 m
ELLIPSOIDAL HEIGHT:	95.587	CONVERGENCE :	-0.50293 Deg	rees
HEIGHT ABOVE LAT/CD:	NA	TBM VALUE above MSL	153.613 m	
LOCATION & ACCESS : TBM es	stablished on Top of Dam of	Sukhi Dam which is situated near	gate number-1.	
STATION MARKING : TBM S	tation is marked with Red pa	aint.		
Expected durability of the Station (Years) :	02 years		
DETAILED DIAGRAM :	N			N→
15:09 Amblipanio		♥ (58)	+	T
छोत्रा	1	Dholisim		
		14 NA	ITA	And Alexander
Gha			11:51	
EIIS	L Dung	garbhint Uzolla		
Pura Ambakhut Lyzı अंआमुट				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Kundal ģsa			
		Lunaja gelimi	100	
npur nyz Suthi D	-	A material		
	n Reservoir			↑ N
Dungarvant Sc	O.dra	3	AL AL	
	Khos ''''	offic		1
S S K	ikawada		and the second se	22 Y /2
Ghutanvad	डीडावाडा	Malu		A TO A
घुटांवड		માલુ	TAM-A	
	sanda		1 Alexandre	MAR .
			Constraint of the Article of the Art	
Tu tu	વસંડા	P /	1	

Coordinates are measured by DGPS observation. Client hasn't supplied any X,Y,Z Value TBM-06 RL value is shifted from FRL(Full Reservoir Level) of the Dam

Client has confirmed that the FRL value(147.820m) is from Mean Sea Level.

Arpit Bose Party chief (FSINPVT) Deputy Executive Engineer Sukhi Dam GOVT. OF GUJRAT

[Station / Bench I	Mark Description	
-fugeo	Job No. :	J_HYD_20_174630	Stat	tion Name:
UGRO	Client :	Govt. Of Gujarat	518	lion Name.
Fugro Survey (India) Pvt. L		Sukhi Dam,Gujarat		
D-222/30, TTC Industrial Are		Arpit Bose,Mathiazhagan	Т	BM-06
MIDC, Nerul, Navi Mumba Pin - 400 075 (India)	Date:	02-04-2021		
	Brief De	scription of the Method Adopted		
1. <u>Purpose of Establishing the stati</u>		n for Bathymetric Survey of Reserv	oir and Topography survey	
2. Equipment Deployed	:- Trimble B>	(992 Receiver		
3. Method Used	- 30 minutes	s Mean Position for Tripod Centre C	f Gravity	
	Final Coordin	nates in WGS84 Datum/UTM zone	<u>-43N</u>	
GEOGRAPHICAL COORDINATES	<u>):</u>	UTM COORDINATES:		CM: 75° E
LATITUDE: 22°2	6'19.66822 " N	EASTING:	3,85,076.034m E	σ = +/- 0.02 m
LONGITUDE : 73°5	2'59.52914"E	NORTHING:	24,81,824.460m N	σ = +/- 0.01 m
ELLIPSOIDAL HEIGHT:	95.587	CONVERGENCE :	-0.50293 Deg	rees
HEIGHT ABOVE LAT/CD:	NA	TBM VALUE above MSL	153.613 m	
LOCATION & ACCESS : TBM esta	ablished on Top of Dam o	of Sukhi Dam which is situated near	gate number-1.	
STATION MARKING : TBM Sta	tion is marked with Red p	aint.		
Expected durability of the Station (Y	'ears) :	02 years		
DETAILED DIAGRAM :	١	↓ †		N→
15:03 Amber Jan Ander Jan (Amber Jan 19:03 (Amber Jan 19:05 (Amber Jan 19:05 (Amb	Droj Storiđal Igan			
ny?	Massoner and a second			

Coordinates are measured by DGPS observation. Client hasn't supplied any X,Y,Z Value TBM-06 RL value is shifted from FRL(Full Reservoir Level) of the Dam

Client has confirmed that the FRL value(147.820m) is from Mean Sea Level.

Arpit Bose Party chief Fugro Survey India pvt Itd

Deputy Executive Engineer

Sukhi Dam Govt. of gujarat

	GRO		REPORT ON RA	DAR ATG SETUP	FOR DATA LOGGING	
Job No: J-HY	D-20-174630		Job Neg			
Client: Govt.	of Gujrat			ne: Singlebeam Bathyme		
				Area / Site: Central Gujr		
	a) ATG Setup on:	01-Mar-21	G Setup, Recovery and Data	Download Information	on and the second s	Continue of
	b) ATG Time set to:	UTC	At: 1200 hrs	Logging inter	By: Mathlazhagan V.,Arpit Bose val set to: 10 min	
	c) Recovered on: d) Data Downloaded on:	- 02-Mar-21	At: At: 17:15	-	RADAR ATG Setup Diagram	
	ATG	Set up & BM Det	ails	Remarks		
	BM Name :	TBM-06		rtoniarks	Stair ralling in Sukhi Dam	
	BM Source : BM to CD (m) :	TBM-06			P	
	MSL to CD (Z ₀) (m):	NA				enso
	BM to ATG (m) ;	0.000	NA			Level
	ATG Value (m) :	151,180			• • • • • • • • • • • • • • • • • • •	
	C-O from ATG Calibration	n -0.006			I I	
	(m): RADAR offset value to b	e entered in the		ration report		
	Tide Master deck	unit (m):	151.174		Ģ	
		Key to RADAR	ATG Setup Diagram nsor set up above BM		Ğ	
	A : Ht of BM above CD/LA	T (m)	nsor set up above BM	NA		
	B : Ht of ATG Sensor abo	ve BM (m)		0.000	MSL	
	C : Ht of ATG sensor w.r.t	Mean Sea Level		51.180		•
	D : Ht of MSL Above CD i	n metres (Z _o)		NA		
	B should be negetive if RAI ATG Calibrat	DAR sensor level ion and Daily V	is below BM erifications Carriedout at Site			
a) <u>Method of</u> pre-calibrated	ATG Calibrat	ion and Daily V	is below BM erifications Carriedout at Site hight of water-level from the Bottom s	urface of Radar using		
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u>	ATG Callbrat Calibration Adopted: Meas tape. ications Carried out:	ion and Daily V	erifications Carriedout at Site		he ATG Data Longed	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u>	ATG Callbrat Callbration Adopted: Meas tape. ications Carried out: Results of ATG Callbrat	ion and Daily V	erifications Carriedout at Site	urface of Radar using eader Information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u>	ATG Callbrat <u>Calibration Adopted</u> ; Meas tape. <u>ications Carried out</u> : <u>Results of ATG Calibrat</u> <u>Measured by (m):</u>	ion and Daily V	erifications Carriedout at Site ight of water-level from the Bottom s ight of water-level from the Bottom s Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time	ATG Callbrat <u>Callbration Adopted</u> ; Meas tape. <u>ications Carried out</u> : <u>Results of ATG Callbrat</u> <u>Measured by (m):</u> <u>Tape (C:)</u> ATG (0:)	tion and Daily V sured the actual he tion	erifications Carriedout at Site hight of water-level from the Bottom s Hight of water-level from the Bottom s Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u>	ATG Callbrat Calibration Adopted: Meas tape. ications Carried out: Results of ATG Calibrat Measured by (m): Tape (C:) ATG (O:) 6.710 -6.	ion and Daily V sured the actual he <u>tion</u>	erifications Carriedout at Site sight of water-level from the Bottom s H Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:40	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he don C-O (m) 713 -0.003 713 -0.003	erifications Carriedout at Site sight of water-level from the Bottom s H Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he don C-O (m) 713 -0.003 713 -0.003	erifications Carriedout at Site hight of water-level from the Bottom s Hight of wate	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he don C-O (m) 713 -0.003 713 -0.003	erifications Carriedout at Site hight of water-level from the Bottom s Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he don C-O (m) 713 -0.003 713 -0.003	Firmware version: 07/41705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he don C-O (m) 713 -0.003 713 -0.003	erifications Carriedout at Site hight of water-level from the Bottom s Himware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar:	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he don C-O (m) 713 -0.003 713 -0.003	erifications Carriedout at Site hight of water-level from the Bottom s hight of water-level from the Bottom s Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he don C-O (m) 713 -0.003 713 -0.003	Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he don C-O (m) 713 -0.003 713 -0.003	Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Station ID: 01 Station ID: 01 Station ID: 01 Station ID: 01 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he c-O (m) 713 -0.003 713 -0.003 722 -0.012	Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 3	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat Callbration Adopted; Meas tape. ications Carried out: Results of ATG Callbrat Measured by (m): Tape (C:) ATG (O:) 1 6.710 -6. 1 6.710 -6.	tion and Daily V sured the actual he c-O (m) 713 -0.003 713 -0.003 722 -0.012	Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 3 Max Limit: 9 Datum: 0	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat	tion and Daily V sured the actual he c-O (m) 713 -0.003 713 -0.003 722 -0.012	Erifications Carriedout at Site hight of water-level from the Bottom s Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 3 Max Limit: 9 Datum: 0 Pre amble: 6	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat	tion and Daily V sured the actual he c-O (m) 713 -0.003 713 -0.003 722 -0.012	erifications Carriedout at Site hight of water-level from the Bottom s Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 3 Max Limit: 9 Datum: 0 Pre amble: 6 Wind speed units: m\sec	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Dally Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat	tion and Daily V sured the actual he c-O (m) 713 -0.003 713 -0.003 722 -0.012	Erifications Carriedout at Site hight of water-level from the Bottom s Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 3 Max Limit: 9 Datum: 0 Pre amble: 6	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat	tion and Daily V sured the actual he c-O (m) 713 -0.003 713 -0.003 722 -0.012	Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 3 Max Limit: 9 Datum: 0 Pre amble: 6 Wind speed units: m\sec Air Pressure units: mBar	eader information for t	he ATG Data Logged	
a) <u>Method of</u> pre-calibrated b) <u>Dally Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat	tion and Daily V sured the actual he c-O (m) 713 -0.003 713 -0.003 722 -0.012	Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 3 Max Limit: 9 Datum: 0 Pre amble: 6 Wind speed units: mSec Air Teessure units: mBar Air Temperature units: DegC	eader information for t		
a) <u>Method of</u> pre-calibrated b) <u>Daily Verif</u> Date & Time 02 Apr/16:50 02 Apr/16:50	ATG Callbrat	tion and Daily V sured the actual he c-O (m) 713 -0.003 713 -0.003 722 -0.012	Firmware version: 0741705B8 File Creation Date: 01/04/2021 12:20 Battery Level: 5.4 TideMaster S/N: 48693 Station ID: 01 Site info: SUKHI DAM Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMASTER Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 3 Max Limit: 9 Datum: 0 Pre amble: 6 Wind speed units: mSec Air Teessure units: mBar Air Temperature units: DegC	eader information for t		

1 ATG Header Info:-

2 ATG Calibration:-

a) Copy and Paste ATG Configuration Header File Information from the Logged file.
 b) Select Tide File- Right Click-Open with Text Pad -Copy Header Information - Paste in Header Information Window

4r hit Bose Party Chief ARPIT BOSE FSINPVT

Deputy Executive Engineer Sukhi Dam GOVT. OF GUJRAT

	<u>(To</u>		ORD OF LEVELLING an established BM to the Zero of ATG / Tide Pole	Tugeo
Job No :	J-HYD-20-174630		Client Name :	Govt. of Gujrat
Levelling Equpt Used:	TOTAL STATION TRIMBLE S3		Equipment Serial/Asset No:	91210063
Area/Location Name:	SUKHI DAM		Date of Observation:	02-03-2021
ide Guage Installed ?:	Yes, ATG RADAR SENSOR		Observer's Name:	Arpit Bose
TG Zero setup at (m):	0	TBM Level at ATG Site	Prism Holder's Name:	Mathiazhagan V.

Start Point BM Name/ID:		TBM-06	
Start Point BM Value (RL) (m):	153.613m	FROM	MSL

	SUKHI-TBM to ATG	ale a de sa
Station Name	Backsight(SUKHI-TBM)	Fore Sight(ATG)
TBM-06	153.615m	151.180m

End Point Level Name:	Bottom of ATG RADAR	
End Point Level Value (m):	151.180m	
Life Font Level Value (m):		

	ATG to SUKHI	твм
Station Name	Backsight(ATG)	Foresight(SUKHI-TBM)
TBM-06	151.180m	153.615m

Misclosure =	0.000	meters
Adjusted Tide Gauge Height =	0.000	meters
Hence, the Zero of Tide Gauge is	151,180	metres Above MSL

Checked by:Arpit Bose Surveyor's Name:Arpit Bose Date:02-04-2021

1.RL Value of station TBM-06 is 153.613m w.r.t Mean Sea Level

-Arbit Bose Party Chief

ARPIT BOSE FSINPVT

Deputy Executive Engineer Sukhi Dam GOVT. OF GUJRAT

LEVELLING RECORD FROM FRL-EDALWADA DAM to EDALWADA-TBM to TBM-05

Job No :	J-HYD-20-174630	Client Name :	GOVT. OF GUJARAT
Levelling Equpt Used:	TOTAL STATION TRIMBLE S3	Equipment Serial/Asset No:	258398 / 273746
Area/Location Name:	SUKHI DAM	Date of Observation:	02/04/2021
Observer's Name:	Arpit Bose	Staff Holder's Name:	Mathizaghan

LEG-1 to SUKHI-TBM						
Station Name	Station Name BACK SIGHT(FRL-SUKHI DAM) FORE SIGHT(SUKHI-TBM)					
LEG-1	147.820m	153.615m				
	LEG-1 to TBM-06					
Station Name	BACK SIGHT(FRL-SUKHI DAM)	FORE SIGHT(TBM-06)				
LEG -1	147.820m	153.613m				

Note Vertical distance from FRL to LEG-1 has measured by Total Station

FRL Value is 147.820m and vertical distance between FRL and LEG-1 is 2.985m so RL of LEG-1 is 147.820m+2.985m=150.805m

So the Station SUKHI-TBM is 153.615m and the station TBM-06 is 153.613m

NOTE-1.Client did not provided any XYZ value of BM. 2.Client has provided FRL-SUKHI DAM RL value is 147.820m with respect to Mean Sea Level. 3.Everyday fugro will observe water level from this water level plate. 4.Fugro has transferred RL values w.r.t FRL RL Value which is shown in water level plate.

Party Chief ARPIT BOSE FSINPVT Deputy Executive Engineer Sukhi Dam GOVT. OF GUJRAT

LEVELLING RECORD

Job No :	J-HYD-20-174630	Client Name :	GOVT. OF GUJARAT
Levelling Equpt Used:	TOTAL STATION TRIMBLE S3	Equipment Serial/Asset No:	258398 / 273746
Area/Location Name:	SUKHI DAM	Date of Observation:	02-04-2021
Observer's Name:	Arpit Bose	Staff Holder's Name:	Mathizaghan

LEG-1 to SUKHI-TBM					
Station Name	BACK SIGHT(FRL-SUKHI DAM)	FORE SIGHT(SUKHI-TBM)			
LEG-1	147.820m	153.615m			
States	LEG-1 to TBM-06				
Station Name	BACK SIGHT(FRL-SUKHI DAM)	FORE SIGHT(TBM-06)			
LEG -1	147.820m	153.613m			

Note Vertical distance from FRL to LEG-1 has measured by Total Station

FRL Value is 147.820m and vertical distance between FRL and LEG-1 is 2.985m so RL of LEG-1 is 147.820m+2.985m=150.805m

So the Station SUKHI-TBM is 153.615m and the station TBM-06 is 153.613m

NOTE- 1.Client did not provided any XYZ value of BM.

2.Client has provided FRL-SUKHI DAM RL value is 147.820m with respect to Mean Sea Level.
3.Everyday fugro will observe water level from this water level plate.
4.Fugro has transferred RL values w.r.t FRL RL Value which is shown in water level plate.

Soze

Party Chief ARPIT BOSE FSINPVT

Deputy Executive Engineer Sukhi Dam GOVT. OF GUJRAT

FR TOS

148

147.

147 146. 146.

1 - A -L

Appendix F

List of Charts

(1 page)

List of Reports / Documents to be Submitted

Sr. No.	Type of Report / Document	Reporting Schedule	No. of Copies (Hard)	Remarks
1	Survey Procedure (QA Document)	01 December 2020	1	Submitted
2	Mobilisation Report (With Results of Calibration)	26 October 2020		Fugro Office copy only
4	Draft Report	30 days from completion of survey	1	Will be submitted after receiving client's comment
5	Final Report on Survey	1 week from receipt of client's comments	10	This Document

Details of Charts Accompanying this Report

Details of Charts							
SI. No.	Charts showing Results of Bathymetry and Topography Survey at Sukhi Reservoir	Sheet No.	Encl. No.	Drawing No.: JHYD-20- 174630/WRD/GUJARAT/BS/	Rev. No	HS	VS
1	Reservoir Bed and Topographic Heights	01 of 01	01 of 03	B/01/9707	0	1:12000	-
2	Contour Map of Sukhi Reservoir	01 of 01	02 of 03	B/01/9708	0	1:12000	-
3	Shaded Relief Image Prepared from SBES Data	01 of 01	03 of 03	I/01/9709	0	1:12000	-
Details of Other Deliverables							
1	L-section	Soft copy					
2	C-section at every 100 m	Soft copy					

